These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

103 related articles for article (PubMed ID: 28375385)

  • 1. Effects of the vertically switching electric field on the photoelectric properties of polymer-stabilized blue-phase liquid crystal cells using the director model.
    Chi CY; Qiu SH; Lin GJ; Chen TJ; Yang YJ; Wu JJ
    Appl Opt; 2017 Mar; 56(9):D29-D36. PubMed ID: 28375385
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Direct measurement of electric-field-induced birefringence in a polymer-stabilized blue-phase liquid crystal composite.
    Yan J; Jiao M; Rao L; Wu ST
    Opt Express; 2010 May; 18(11):11450-5. PubMed ID: 20589005
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A vertical-field-driven polymer-stabilized blue phase liquid crystal mode to obtain a higher transmittance and lower driving voltage.
    Kim YH; Hur ST; Park CS; Park KW; Choi SW; Kang SW; Kim HR
    Opt Express; 2011 Aug; 19(18):17427-38. PubMed ID: 21935109
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of cell gap on the optoelectronic properties of pure blue-phase liquid crystal devices: estimating the Kerr constant.
    Chi CY; Lin GJ; Hu SS; Tsai SY; Chen TJ; Lin JH; Yang YJ; Wu JJ
    Appl Opt; 2017 Feb; 56(4):1207-1214. PubMed ID: 28158135
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Simulation of the in-plane-switching blue-phase liquid crystal using the director model.
    Hu SS; Wu JJ; Hsu CC; Chen TJ; Lee KL
    Opt Express; 2012 Oct; 20(21):23954-9. PubMed ID: 23188361
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dual-period tunable phase grating based on a single in-plane switching.
    Gao L; Zheng ZZ; Zhu JL; Han WM; Sun YB
    Opt Lett; 2016 Aug; 41(16):3775-8. PubMed ID: 27519086
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evaluation of Kerr constant of blue-phase liquid crystals by measuring off-axis retardation in vertical electric field cells.
    Hsieh PJ; Chen HM
    Appl Opt; 2011 Sep; 50(27):5299-302. PubMed ID: 21947049
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Blue phase liquid crystal: strategies for phase stabilization and device development.
    Rahman MD; Mohd Said S; Balamurugan S
    Sci Technol Adv Mater; 2015 Jun; 16(3):033501. PubMed ID: 27877782
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Polarization independent blue-phase liquid crystal cylindrical lens with a resistive film.
    Li Y; Liu Y; Li Q; Wu ST
    Appl Opt; 2012 May; 51(14):2568-72. PubMed ID: 22614475
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Formation of monodomain polymer-stabilized blue phase liquid crystals using surface acoustic waves.
    Suryantari R; Shih YH; Shih YH; Chen HY; Wu CS; Huang CY
    Opt Lett; 2023 Jan; 48(1):77-80. PubMed ID: 36563373
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Low voltage and high resolution phase modulator based on blue phase liquid crystals with external compact optical system.
    Yan J; Xing Y; Guo Z; Li Q
    Opt Express; 2015 Jun; 23(12):15256-64. PubMed ID: 26193507
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Viewing angle controllable displays with a blue-phase liquid crystal cell.
    Rao L; Ge Z; Wu ST
    Opt Express; 2010 Feb; 18(3):3143-8. PubMed ID: 20174152
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Refraction effect in an in-plane-switching blue phase liquid crystal cell.
    Xu D; Chen Y; Liu Y; Wu ST
    Opt Express; 2013 Oct; 21(21):24721-35. PubMed ID: 24150316
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Low voltage polymer-stabilized blue phase liquid crystal reflective display by doping ferroelectric nanoparticles.
    Xu XW; Zhang XW; Luo D; Dai HT
    Opt Express; 2015 Dec; 23(25):32267-73. PubMed ID: 26699017
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of Amorphous Crosslinker on Phase Behavior and Electro-Optic Response of Polymer-Stabilized Blue Phase Liquid Crystals.
    Lee KM; Tohgha U; Bunning TJ; McConney ME; Godman NP
    Nanomaterials (Basel); 2021 Dec; 12(1):. PubMed ID: 35009998
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Anisotropy of the electro-optic Kerr effect in polymer-stabilized blue phases.
    Kawata Y; Yoshida H; Tanaka S; Konkanok A; Ozaki M; Kikuchi H
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Feb; 91(2):022503. PubMed ID: 25768521
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enhanced contrast ratio and viewing angle of polymer-stabilized liquid crystal via refractive index matching between liquid crystal and polymer network.
    Lee JH; Lee JJ; Lim YJ; Kundu S; Kang SW; Lee SH
    Opt Express; 2013 Nov; 21(22):26914-20. PubMed ID: 24216913
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Landau model for polymer-stabilized ferroelectric liquid crystals: experiment and theory.
    Archer P; Dierking I; Osipov M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Nov; 78(5 Pt 1):051703. PubMed ID: 19113139
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of anisotropic lattice deformation on the Kerr coefficient of polymer-stabilized blue-phase liquid crystals.
    Tone H; Yoshida H; Yabu S; Ozaki M; Kikuchi H
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Jan; 89(1):012506. PubMed ID: 24580245
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Performance enhancement using a non-uniform vertical electric field and polymer networks for in-plane switching of multi-pretilt, vertically aligned liquid crystal devices.
    Lin GJ; Chen TJ; Tsai YW; Lin YT; Wu JJ; Yang YJ
    Opt Lett; 2014 Nov; 39(21):6225-8. PubMed ID: 25361320
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.