These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
390 related articles for article (PubMed ID: 28375584)
1. Fully automated segmentation of whole breast using dynamic programming in dynamic contrast enhanced MR images. Jiang L; Hu X; Xiao Q; Gu Y; Li Q Med Phys; 2017 Jun; 44(6):2400-2414. PubMed ID: 28375584 [TBL] [Abstract][Full Text] [Related]
2. Segmentation of whole breast and fibroglandular tissue using nnU-Net in dynamic contrast enhanced MR images. Huo L; Hu X; Xiao Q; Gu Y; Chu X; Jiang L Magn Reson Imaging; 2021 Oct; 82():31-41. PubMed ID: 34147598 [TBL] [Abstract][Full Text] [Related]
3. Automated fibroglandular tissue segmentation and volumetric density estimation in breast MRI using an atlas-aided fuzzy C-means method. Wu S; Weinstein SP; Conant EF; Kontos D Med Phys; 2013 Dec; 40(12):122302. PubMed ID: 24320533 [TBL] [Abstract][Full Text] [Related]
4. Automated chest wall line detection for whole-breast segmentation in sagittal breast MR images. Wu S; Weinstein SP; Conant EF; Schnall MD; Kontos D Med Phys; 2013 Apr; 40(4):042301. PubMed ID: 23556914 [TBL] [Abstract][Full Text] [Related]
5. Fully automatic quantification of fibroglandular tissue and background parenchymal enhancement with accurate implementation for axial and sagittal breast MRI protocols. Wei D; Jahani N; Cohen E; Weinstein S; Hsieh MK; Pantalone L; Kontos D Med Phys; 2021 Jan; 48(1):238-252. PubMed ID: 33150617 [TBL] [Abstract][Full Text] [Related]
6. Fully Automatic Assessment of Background Parenchymal Enhancement on Breast MRI Using Machine-Learning Models. Nam Y; Park GE; Kang J; Kim SH J Magn Reson Imaging; 2021 Mar; 53(3):818-826. PubMed ID: 33219624 [TBL] [Abstract][Full Text] [Related]
7. SU-E-I-70: Semi-Automatic, User-Driven Breast, Chest Wall and FGT Segmentations Based on Hough Transform, Morphology Tools and Histogram Technology. Wang Y; Deasy J Med Phys; 2012 Jun; 39(6Part5):3641. PubMed ID: 28517626 [TBL] [Abstract][Full Text] [Related]
8. Automated fibroglandular tissue segmentation in breast MRI using generative adversarial networks. Ma X; Wang J; Zheng X; Liu Z; Long W; Zhang Y; Wei J; Lu Y Phys Med Biol; 2020 May; 65(10):105006. PubMed ID: 32155611 [TBL] [Abstract][Full Text] [Related]
9. Using deep learning to segment breast and fibroglandular tissue in MRI volumes. Dalmış MU; Litjens G; Holland K; Setio A; Mann R; Karssemeijer N; Gubern-Mérida A Med Phys; 2017 Feb; 44(2):533-546. PubMed ID: 28035663 [TBL] [Abstract][Full Text] [Related]
10. Automated breast-region segmentation in the axial breast MR images. Milenković J; Chambers O; Marolt Mušič M; Tasič JF Comput Biol Med; 2015 Jul; 62():55-64. PubMed ID: 25912987 [TBL] [Abstract][Full Text] [Related]
11. Treatment response assessment of breast masses on dynamic contrast-enhanced magnetic resonance scans using fuzzy c-means clustering and level set segmentation. Shi J; Sahiner B; Chan HP; Paramagul C; Hadjiiski LM; Helvie M; Chenevert T Med Phys; 2009 Nov; 36(11):5052-63. PubMed ID: 19994516 [TBL] [Abstract][Full Text] [Related]
12. Generalizable attention U-Net for segmentation of fibroglandular tissue and background parenchymal enhancement in breast DCE-MRI. Nowakowska S; Borkowski K; Ruppert CM; Landsmann A; Marcon M; Berger N; Boss A; Ciritsis A; Rossi C Insights Imaging; 2023 Nov; 14(1):185. PubMed ID: 37932462 [TBL] [Abstract][Full Text] [Related]
13. Fully Automated Convolutional Neural Network Method for Quantification of Breast MRI Fibroglandular Tissue and Background Parenchymal Enhancement. Ha R; Chang P; Mema E; Mutasa S; Karcich J; Wynn RT; Liu MZ; Jambawalikar S J Digit Imaging; 2019 Feb; 32(1):141-147. PubMed ID: 30076489 [TBL] [Abstract][Full Text] [Related]
14. Knowledge-based and deep learning-based automated chest wall segmentation in magnetic resonance images of extremely dense breasts. Verburg E; Wolterink JM; de Waard SN; Išgum I; van Gils CH; Veldhuis WB; Gilhuijs KGA Med Phys; 2019 Oct; 46(10):4405-4416. PubMed ID: 31274194 [TBL] [Abstract][Full Text] [Related]
15. Automated deep learning method for whole-breast segmentation in diffusion-weighted breast MRI. Zhang L; Mohamed AA; Chai R; Guo Y; Zheng B; Wu S J Magn Reson Imaging; 2020 Feb; 51(2):635-643. PubMed ID: 31301201 [TBL] [Abstract][Full Text] [Related]
16. Automated breast segmentation of fat and water MR images using dynamic programming. Rosado-Toro JA; Barr T; Galons JP; Marron MT; Stopeck A; Thomson C; Thompson P; Carroll D; Wolf E; Altbach MI; Rodríguez JJ Acad Radiol; 2015 Feb; 22(2):139-48. PubMed ID: 25572926 [TBL] [Abstract][Full Text] [Related]
17. An unsupervised automatic segmentation algorithm for breast tissue classification of dedicated breast computed tomography images. Caballo M; Boone JM; Mann R; Sechopoulos I Med Phys; 2018 Jun; 45(6):2542-2559. PubMed ID: 29676025 [TBL] [Abstract][Full Text] [Related]
18. An automated skin segmentation of Breasts in Dynamic Contrast-Enhanced Magnetic Resonance Imaging. Lee CY; Chang TF; Chang NY; Chang YC Sci Rep; 2018 Apr; 8(1):6159. PubMed ID: 29670156 [TBL] [Abstract][Full Text] [Related]
19. Quantitative assessment of background parenchymal enhancement in breast MRI predicts response to risk-reducing salpingo-oophorectomy: preliminary evaluation in a cohort of BRCA1/2 mutation carriers. Wu S; Weinstein SP; DeLeo MJ; Conant EF; Chen J; Domchek SM; Kontos D Breast Cancer Res; 2015 May; 17():67. PubMed ID: 25986460 [TBL] [Abstract][Full Text] [Related]
20. Malignant lesion segmentation in contrast-enhanced breast MR images based on the marker-controlled watershed. Cui Y; Tan Y; Zhao B; Liberman L; Parbhu R; Kaplan J; Theodoulou M; Hudis C; Schwartz LH Med Phys; 2009 Oct; 36(10):4359-69. PubMed ID: 19928066 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]