BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

232 related articles for article (PubMed ID: 28375637)

  • 1. Development of a General Aza-Cope Reaction Trigger Applied to Fluorescence Imaging of Formaldehyde in Living Cells.
    Bruemmer KJ; Walvoord RR; Brewer TF; Burgos-Barragan G; Wit N; Pontel LB; Patel KJ; Chang CJ
    J Am Chem Soc; 2017 Apr; 139(15):5338-5350. PubMed ID: 28375637
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An Aza-Cope Reactivity-Based Fluorescent Probe for Imaging Formaldehyde in Living Cells.
    Brewer TF; Chang CJ
    J Am Chem Soc; 2015 Sep; 137(34):10886-9. PubMed ID: 26306005
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Systematic investigation of the aza-Cope reaction for fluorescence imaging of formaldehyde
    Du Y; Zhang Y; Huang M; Wang S; Wang J; Liao K; Wu X; Zhou Q; Zhang X; Wu YD; Peng T
    Chem Sci; 2021 Oct; 12(41):13857-13869. PubMed ID: 34760171
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A 2-aza-Cope reactivity-based platform for ratiometric fluorescence imaging of formaldehyde in living cells.
    Brewer TF; Burgos-Barragan G; Wit N; Patel KJ; Chang CJ
    Chem Sci; 2017 May; 8(5):4073-4081. PubMed ID: 28580121
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Activity-Based Sensing Methods for Monitoring the Reactive Carbon Species Carbon Monoxide and Formaldehyde in Living Systems.
    Ohata J; Bruemmer KJ; Chang CJ
    Acc Chem Res; 2019 Oct; 52(10):2841-2848. PubMed ID: 31487154
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A simple naphthalene-based fluorescent probe for high selective detection of formaldehyde in toffees and HeLa cells via aza-Cope reaction.
    Xu J; Zhang Y; Zeng L; Liu J; Kinsella JM; Sheng R
    Talanta; 2016 Nov; 160():645-652. PubMed ID: 27591661
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Activity-Based Genetically Encoded Fluorescent and Luminescent Probes for Detecting Formaldehyde in Living Cells.
    Zhang Y; Du Y; Li M; Zhang D; Xiang Z; Peng T
    Angew Chem Int Ed Engl; 2020 Sep; 59(38):16352-16356. PubMed ID: 32537908
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Chemiluminescent Probes for Activity-Based Sensing of Formaldehyde Released from Folate Degradation in Living Mice.
    Bruemmer KJ; Green O; Su TA; Shabat D; Chang CJ
    Angew Chem Int Ed Engl; 2018 Jun; 57(25):7508-7512. PubMed ID: 29635731
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Reaction-Based Fluorescent Probe for Imaging of Formaldehyde in Living Cells.
    Roth A; Li H; Anorma C; Chan J
    J Am Chem Soc; 2015 Sep; 137(34):10890-3. PubMed ID: 26305899
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Reaction-based fluorescent and chemiluminescent probes for formaldehyde detection and imaging.
    Huang S; Li Z; Liu M; Zhou M; Weng J; He Y; Jiang Y; Zhang H; Sun H
    Chem Commun (Camb); 2022 Feb; 58(10):1442-1453. PubMed ID: 34991152
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A ratiometric ESIPT probe based on 2-aza-Cope rearrangement for rapid and selective detection of formaldehyde in living cells.
    Quan T; Liang Z; Pang H; Zeng G; Chen T
    Analyst; 2022 Jan; 147(2):252-261. PubMed ID: 34931639
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cell-permeable fluorescent indicator for imaging formaldehyde activity in living systems.
    Liu J; Li K; Xue P; Xu J
    Anal Biochem; 2022 Sep; 652():114749. PubMed ID: 35636460
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A two-photon fluorescent probe for bio-imaging of formaldehyde in living cells and tissues.
    Li JB; Wang QQ; Yuan L; Wu YX; Hu XX; Zhang XB; Tan W
    Analyst; 2016 May; 141(11):3395-402. PubMed ID: 27137921
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Systematic Screening of Trigger Moieties for Designing Formaldehyde Fluorescent Probes and Application in Live Cell Imaging.
    Jiang Y; Huang S; Liu M; Li Z; Xiao W; Zhang H; Yang L; Sun H
    Biosensors (Basel); 2022 Oct; 12(10):. PubMed ID: 36290992
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Modular development of organelle-targeting fluorescent probes for imaging formaldehyde in live cells.
    Zhang Y; Du Y; Liao K; Peng T
    Anal Methods; 2024 Jun; 16(23):3646-3653. PubMed ID: 38738568
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An Aggregation-Induced Emission-Based "Turn-On" Fluorescent Probe for Facile Detection of Gaseous Formaldehyde.
    Zhao X; Ji C; Ma L; Wu Z; Cheng W; Yin M
    ACS Sens; 2018 Oct; 3(10):2112-2117. PubMed ID: 30256619
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A reversible fluorescent probe based on C[double bond, length as m-dash]N isomerization for the selective detection of formaldehyde in living cells and in vivo.
    Song X; Han X; Yu F; Zhang J; Chen L; Lv C
    Analyst; 2018 Jan; 143(2):429-439. PubMed ID: 29260163
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fluorescent probes for imaging formaldehyde in biological systems.
    Bruemmer KJ; Brewer TF; Chang CJ
    Curr Opin Chem Biol; 2017 Aug; 39():17-23. PubMed ID: 28527906
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Imaging of Formaldehyde in Live Cells and
    Yang M; Fan J; Du J; Long S; Wang J; Peng X
    Front Chem; 2018; 6():488. PubMed ID: 30374438
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An intramolecular charge transfer and excited state intramolecular proton transfer based fluorescent probe for highly selective detection and imaging of formaldehyde in living cells.
    Chen W; Yang M; Luo N; Wang F; Yu RQ; Jiang JH
    Analyst; 2019 Nov; 144(23):6922-6927. PubMed ID: 31660553
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.