BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

213 related articles for article (PubMed ID: 28375678)

  • 1. Intracellular Distribution and Nuclear Activity of Antisense Oligonucleotides After Unassisted Uptake in Myoblasts and Differentiated Myotubes In Vitro.
    González-Barriga A; Nillessen B; Kranzen J; van Kessel IDG; Croes HJE; Aguilera B; de Visser PC; Datson NA; Mulders SAM; van Deutekom JCT; Wieringa B; Wansink DG
    Nucleic Acid Ther; 2017 Jun; 27(3):144-158. PubMed ID: 28375678
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Peptide conjugation of 2'-O-methyl phosphorothioate antisense oligonucleotides enhances cardiac uptake and exon skipping in mdx mice.
    Jirka SM; Heemskerk H; Tanganyika-de Winter CL; Muilwijk D; Pang KH; de Visser PC; Janson A; Karnaoukh TG; Vermue R; 't Hoen PA; van Deutekom JC; Aguilera B; Aartsma-Rus A
    Nucleic Acid Ther; 2014 Feb; 24(1):25-36. PubMed ID: 24320790
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Feasibility of SPECT-CT Imaging to Study the Pharmacokinetics of Antisense Oligonucleotides in a Mouse Model of Duchenne Muscular Dystrophy.
    van de Steeg E; Läppchen T; Aguilera B; Jansen HT; Muilwijk D; Vermue R; van der Hoorn JW; Donato K; Rossin R; de Visser PC; Vlaming MLH
    Nucleic Acid Ther; 2017 Aug; 27(4):221-231. PubMed ID: 28418733
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dose-dependent pharmacokinetic profiles of 2'-O-methyl phosphorothioate antisense oligonucleotidesin mdx mice.
    Verhaart IE; Tanganyika-de Winter CL; Karnaoukh TG; Kolfschoten IG; de Kimpe SJ; van Deutekom JC; Aartsma-Rus A
    Nucleic Acid Ther; 2013 Jun; 23(3):228-37. PubMed ID: 23634945
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Advanced Fluorescence Imaging to Distinguish Between Intracellular Fractions of Antisense Oligonucleotides.
    van der Bent ML; Wansink DG; Brock R
    Methods Mol Biol; 2020; 2063():119-138. PubMed ID: 31667767
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparative analysis of antisense oligonucleotide analogs for targeted DMD exon 46 skipping in muscle cells.
    Aartsma-Rus A; Kaman WE; Bremmer-Bout M; Janson AA; den Dunnen JT; van Ommen GJ; van Deutekom JC
    Gene Ther; 2004 Sep; 11(18):1391-8. PubMed ID: 15229633
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In vivo comparison of 2'-O-methyl phosphorothioate and morpholino antisense oligonucleotides for Duchenne muscular dystrophy exon skipping.
    Heemskerk HA; de Winter CL; de Kimpe SJ; van Kuik-Romeijn P; Heuvelmans N; Platenburg GJ; van Ommen GJ; van Deutekom JC; Aartsma-Rus A
    J Gene Med; 2009 Mar; 11(3):257-66. PubMed ID: 19140108
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Exonic sequences provide better targets for antisense oligonucleotides than splice site sequences in the modulation of Duchenne muscular dystrophy splicing.
    Aartsma-Rus A; Houlleberghs H; van Deutekom JC; van Ommen GJ; 't Hoen PA
    Oligonucleotides; 2010 Apr; 20(2):69-77. PubMed ID: 20377429
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Exploring the frontiers of therapeutic exon skipping for Duchenne muscular dystrophy by double targeting within one or multiple exons.
    Aartsma-Rus A; Kaman WE; Weij R; den Dunnen JT; van Ommen GJ; van Deutekom JC
    Mol Ther; 2006 Sep; 14(3):401-7. PubMed ID: 16753346
    [TBL] [Abstract][Full Text] [Related]  

  • 10. DMD pseudoexon mutations: splicing efficiency, phenotype, and potential therapy.
    Gurvich OL; Tuohy TM; Howard MT; Finkel RS; Medne L; Anderson CB; Weiss RB; Wilton SD; Flanigan KM
    Ann Neurol; 2008 Jan; 63(1):81-9. PubMed ID: 18059005
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Myoblasts and macrophages are required for therapeutic morpholino antisense oligonucleotide delivery to dystrophic muscle.
    Novak JS; Hogarth MW; Boehler JF; Nearing M; Vila MC; Heredia R; Fiorillo AA; Zhang A; Hathout Y; Hoffman EP; Jaiswal JK; Nagaraju K; Cirak S; Partridge TA
    Nat Commun; 2017 Oct; 8(1):941. PubMed ID: 29038471
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Generation of Human iPSC-Derived Myotubes to Investigate RNA-Based Therapies In Vitro.
    Herrero-Hernandez P; Bergsma AJ; Pijnappel WWMP
    Methods Mol Biol; 2022; 2434():235-243. PubMed ID: 35213021
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Poly(ethylene imine)-poly(ethylene glycol) copolymers facilitate efficient delivery of antisense oligonucleotides to nuclei of mature muscle cells of mdx mice.
    Sirsi SR; Williams JH; Lutz GJ
    Hum Gene Ther; 2005 Nov; 16(11):1307-17. PubMed ID: 16259564
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cellular uptake mediated by epidermal growth factor receptor facilitates the intracellular activity of phosphorothioate-modified antisense oligonucleotides.
    Wang S; Allen N; Vickers TA; Revenko AS; Sun H; Liang XH; Crooke ST
    Nucleic Acids Res; 2018 Apr; 46(7):3579-3594. PubMed ID: 29514240
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Short (16-mer) locked nucleic acid splice-switching oligonucleotides restore dystrophin production in Duchenne Muscular Dystrophy myotubes.
    Pires VB; Simões R; Mamchaoui K; Carvalho C; Carmo-Fonseca M
    PLoS One; 2017; 12(7):e0181065. PubMed ID: 28742140
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Development of antisense-mediated exon skipping as a treatment for duchenne muscular dystrophy.
    Heemskerk H; de Winter CL; van Ommen GJ; van Deutekom JC; Aartsma-Rus A
    Ann N Y Acad Sci; 2009 Sep; 1175():71-9. PubMed ID: 19796079
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Targeted exon skipping in transgenic hDMD mice: A model for direct preclinical screening of human-specific antisense oligonucleotides.
    Bremmer-Bout M; Aartsma-Rus A; de Meijer EJ; Kaman WE; Janson AA; Vossen RH; van Ommen GJ; den Dunnen JT; van Deutekom JC
    Mol Ther; 2004 Aug; 10(2):232-40. PubMed ID: 15294170
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Efficient gene silencing by delivery of locked nucleic acid antisense oligonucleotides, unassisted by transfection reagents.
    Stein CA; Hansen JB; Lai J; Wu S; Voskresenskiy A; Høg A; Worm J; Hedtjärn M; Souleimanian N; Miller P; Soifer HS; Castanotto D; Benimetskaya L; Ørum H; Koch T
    Nucleic Acids Res; 2010 Jan; 38(1):e3. PubMed ID: 19854938
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The therapeutic potential of antisense-mediated exon skipping.
    van Ommen GJ; van Deutekom J; Aartsma-Rus A
    Curr Opin Mol Ther; 2008 Apr; 10(2):140-9. PubMed ID: 18386226
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Opportunities and challenges for antisense oligonucleotide therapies.
    Kuijper EC; Bergsma AJ; Pijnappel WWMP; Aartsma-Rus A
    J Inherit Metab Dis; 2021 Jan; 44(1):72-87. PubMed ID: 32391605
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.