These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 28375704)

  • 1. Tailored Surfaces/Assemblies for Molecular Plasmonics and Plasmonic Molecular Electronics.
    Lacroix JC; Martin P; Lacaze PC
    Annu Rev Anal Chem (Palo Alto Calif); 2017 Jun; 10(1):201-224. PubMed ID: 28375704
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Conducting polymer electrochemical switching as an easy means for designing active plasmonic devices.
    Leroux YR; Lacroix JC; Chane-Ching KI; Fave C; Félidj N; Lévi G; Aubard J; Krenn JR; Hohenau A
    J Am Chem Soc; 2005 Nov; 127(46):16022-3. PubMed ID: 16287278
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Molecular Plasmonics.
    Wilson AJ; Willets KA
    Annu Rev Anal Chem (Palo Alto Calif); 2016 Jun; 9(1):27-43. PubMed ID: 27049633
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Plasmonics in nanostructures.
    Fang Z; Zhu X
    Adv Mater; 2013 Jul; 25(28):3840-56. PubMed ID: 23813594
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Substrate phonon-mediated plasmon hybridization in coplanar graphene nanostructures for broadband plasmonic circuits.
    Yang X; Kong XT; Bai B; Li Z; Hu H; Qiu X; Dai Q
    Small; 2015 Feb; 11(5):591-6. PubMed ID: 25273326
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Molecular Plasmonics with Metamaterials.
    Wang P; Krasavin AV; Liu L; Jiang Y; Li Z; Guo X; Tong L; Zayats AV
    Chem Rev; 2022 Oct; 122(19):15031-15081. PubMed ID: 36194441
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Thousand-fold Increase in Plasmonic Light Emission via Combined Electronic and Optical Excitations.
    Cui L; Zhu Y; Nordlander P; Di Ventra M; Natelson D
    Nano Lett; 2021 Mar; 21(6):2658-2665. PubMed ID: 33710898
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Plasmon-induced optical anisotropy in hybrid graphene-metal nanoparticle systems.
    Gilbertson AM; Francescato Y; Roschuk T; Shautsova V; Chen Y; Sidiropoulos TP; Hong M; Giannini V; Maier SA; Cohen LF; Oulton RF
    Nano Lett; 2015 May; 15(5):3458-64. PubMed ID: 25915785
    [TBL] [Abstract][Full Text] [Related]  

  • 9. From molecular design and materials construction to organic nanophotonic devices.
    Zhang C; Yan Y; Zhao YS; Yao J
    Acc Chem Res; 2014 Dec; 47(12):3448-58. PubMed ID: 25343682
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Active quantum plasmonics.
    Marinica DC; Zapata M; Nordlander P; Kazansky AK; M Echenique P; Aizpurua J; Borisov AG
    Sci Adv; 2015 Dec; 1(11):e1501095. PubMed ID: 26824066
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Active Plasmonics and Active Chiral Plasmonics through Orientation-Dependent Multipolar Interactions.
    Stevenson PR; Du M; Cherqui C; Bourgeois MR; Rodriguez K; Neff JR; Abreu E; Meiler IM; Tamma VA; Apkarian VA; Schatz GC; Yuen-Zhou J; Shumaker-Parry JS
    ACS Nano; 2020 Sep; 14(9):11518-11532. PubMed ID: 32790353
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ultraviolet Interband Plasmonics With Si Nanostructures.
    Dong Z; Wang T; Chi X; Ho J; Tserkezis C; Yap SLK; Rusydi A; Tjiptoharsono F; Thian D; Mortensen NA; Yang JKW
    Nano Lett; 2019 Nov; 19(11):8040-8048. PubMed ID: 31560545
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tunability of hybridized plasmonic waveguide mediated by surface plasmon polaritons.
    Jiang MM; Chen HY; Shan CX; Shen DZ
    Phys Chem Chem Phys; 2014 Aug; 16(30):16233-40. PubMed ID: 24968699
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Plasmonic Solar Cells: From Rational Design to Mechanism Overview.
    Jang YH; Jang YJ; Kim S; Quan LN; Chung K; Kim DH
    Chem Rev; 2016 Dec; 116(24):14982-15034. PubMed ID: 28027647
    [TBL] [Abstract][Full Text] [Related]  

  • 15. From Optical to Chemical Hot Spots in Plasmonics.
    Gargiulo J; Berté R; Li Y; Maier SA; Cortés E
    Acc Chem Res; 2019 Sep; 52(9):2525-2535. PubMed ID: 31430119
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Super-resolution imaging of interactions between molecules and plasmonic nanostructures.
    Willets KA
    Phys Chem Chem Phys; 2013 Apr; 15(15):5345-54. PubMed ID: 23321954
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Molecular plasmonics: light meets molecules at the nanoscale.
    Csaki A; Schneider T; Wirth J; Jahr N; Steinbrück A; Stranik O; Garwe F; Müller R; Fritzsche W
    Philos Trans A Math Phys Eng Sci; 2011 Sep; 369(1950):3483-96. PubMed ID: 21807723
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Plasmonics on the slope of enlightenment: the role of transition metal nitrides.
    Guler U; Kildishev AV; Boltasseva A; Shalaev VM
    Faraday Discuss; 2015; 178():71-86. PubMed ID: 25767999
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Plasmonic ZnO/Ag embedded structures as collecting layers for photogenerating electrons in solar hydrogen generation photoelectrodes.
    Chen HM; Chen CK; Tseng ML; Wu PC; Chang CM; Cheng LC; Huang HW; Chan TS; Huang DW; Liu RS; Tsai DP
    Small; 2013 Sep; 9(17):2926-36. PubMed ID: 23427053
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Spectral signatures of charge transfer in assemblies of molecularly-linked plasmonic nanoparticles.
    Lerch S; Reinhard BM
    Int J Mod Phys B; 2017 Sep; 31(24):. PubMed ID: 29391660
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.