BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 28375712)

  • 1. Ovarian Cancer Differential Interactome and Network Entropy Analysis Reveal New Candidate Biomarkers.
    Ayyildiz D; Gov E; Sinha R; Arga KY
    OMICS; 2017 May; 21(5):285-294. PubMed ID: 28375712
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Systematic module approach identifies altered genes and pathways in four types of ovarian cancer.
    Liu J; Wang HL; Ma FM; Guo HP; Fang NN; Wang SS; Li XH
    Mol Med Rep; 2017 Dec; 16(6):7907-7914. PubMed ID: 28983627
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Multiomics Analysis of Tumor Microenvironment Reveals Gata2 and miRNA-124-3p as Potential Novel Biomarkers in Ovarian Cancer.
    Gov E; Kori M; Arga KY
    OMICS; 2017 Oct; 21(10):603-615. PubMed ID: 28937943
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparative analysis of protein interactome networks prioritizes candidate genes with cancer signatures.
    Li Y; Sahni N; Yi S
    Oncotarget; 2016 Nov; 7(48):78841-78849. PubMed ID: 27791983
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Identification of candidate biomarkers and analysis of prognostic values in ovarian cancer by integrated bioinformatics analysis.
    Xu Z; Zhou Y; Cao Y; Dinh TL; Wan J; Zhao M
    Med Oncol; 2016 Nov; 33(11):130. PubMed ID: 27757782
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Meta-analysis based gene expression profiling reveals functional genes in ovarian cancer.
    Zhao L; Li Y; Zhang Z; Zou J; Li J; Wei R; Guo Q; Zhu X; Chu C; Fu X; Yue J; Li X
    Biosci Rep; 2020 Nov; 40(11):. PubMed ID: 33135729
    [TBL] [Abstract][Full Text] [Related]  

  • 7. ELF3 is a negative regulator of epithelial-mesenchymal transition in ovarian cancer cells.
    Yeung TL; Leung CS; Wong KK; Gutierrez-Hartmann A; Kwong J; Gershenson DM; Mok SC
    Oncotarget; 2017 Mar; 8(10):16951-16963. PubMed ID: 28199976
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A novel framework for inferring condition-specific TF and miRNA co-regulation of protein-protein interactions.
    Zhang J; Le TD; Liu L; He J; Li J
    Gene; 2016 Feb; 577(1):55-64. PubMed ID: 26611531
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Functional transcriptomic annotation and protein-protein interaction analysis identify EZH2 and UBE2C as key upregulated proteins in ovarian cancer.
    Martínez-Canales S; López de Rodas M; Nuncia-Cantarero M; Páez R; Amir E; Győrffy B; Pandiella A; Galán-Moya EM; Ocaña A
    Cancer Med; 2018 May; 7(5):1896-1907. PubMed ID: 29575713
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Pan-cancer mapping of differential protein-protein interactions.
    Gulfidan G; Turanli B; Beklen H; Sinha R; Arga KY
    Sci Rep; 2020 Feb; 10(1):3272. PubMed ID: 32094374
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Creation of a Human Secretome: A Novel Composite Library of Human Secreted Proteins: Validation Using Ovarian Cancer Gene Expression Data and a Virtual Secretome Array.
    Vathipadiekal V; Wang V; Wei W; Waldron L; Drapkin R; Gillette M; Skates S; Birrer M
    Clin Cancer Res; 2015 Nov; 21(21):4960-9. PubMed ID: 25944803
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Screening the molecular targets of ovarian cancer based on bioinformatics analysis.
    Du L; Qian X; Dai C; Wang L; Huang D; Wang S; Shen X
    Tumori; 2015; 101(4):384-9. PubMed ID: 25953442
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Discover the molecular biomarker associated with cell death and extracellular matrix module in ovarian cancer.
    Liu Q; Guo J; Cui J; Wang J; Yi P
    Biomed Res Int; 2015; 2015():735689. PubMed ID: 25861644
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Molecular signatures of ovarian diseases: Insights from network medicine perspective.
    Kori M; Gov E; Arga KY
    Syst Biol Reprod Med; 2016 Aug; 62(4):266-82. PubMed ID: 27341345
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Differential co-expression analysis reveals a novel prognostic gene module in ovarian cancer.
    Gov E; Arga KY
    Sci Rep; 2017 Jul; 7(1):4996. PubMed ID: 28694494
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Pathway crosstalk analysis based on protein-protein network analysis in ovarian cancer.
    Pan XH
    Asian Pac J Cancer Prev; 2012; 13(8):3905-9. PubMed ID: 23098491
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Triple negative breast cancer: a multi-omics network discovery strategy for candidate targets and driving pathways.
    Karagoz K; Sinha R; Arga KY
    OMICS; 2015 Feb; 19(2):115-30. PubMed ID: 25611337
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Identification of molecular biomarkers for pancreatic cancer with mRMR shortest path method.
    Shen S; Gui T; Ma C
    Oncotarget; 2017 Jun; 8(25):41432-41439. PubMed ID: 28611293
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Detection of driver protein complexes in breast cancer metastasis by large-scale transcriptome-interactome integration.
    Garcia M; Finetti P; Bertucci F; Birnbaum D; Bidaut G
    Methods Mol Biol; 2014; 1101():67-85. PubMed ID: 24233778
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Trastuzumab and pertuzumab produce changes in morphology and estrogen receptor signaling in ovarian cancer xenografts revealing new treatment strategies.
    Faratian D; Zweemer AJ; Nagumo Y; Sims AH; Muir M; Dodds M; Mullen P; Um I; Kay C; Hasmann M; Harrison DJ; Langdon SP
    Clin Cancer Res; 2011 Jul; 17(13):4451-61. PubMed ID: 21571868
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.