These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
579 related articles for article (PubMed ID: 28375729)
1. Long-Range Interactions in Riboswitch Control of Gene Expression. Jones CP; Ferré-D'Amaré AR Annu Rev Biophys; 2017 May; 46():455-481. PubMed ID: 28375729 [TBL] [Abstract][Full Text] [Related]
2. The dynamic nature of RNA as key to understanding riboswitch mechanisms. Haller A; Soulière MF; Micura R Acc Chem Res; 2011 Dec; 44(12):1339-48. PubMed ID: 21678902 [TBL] [Abstract][Full Text] [Related]
3. A structural intermediate pre-organizes the add adenine riboswitch for ligand recognition. St-Pierre P; Shaw E; Jacques S; Dalgarno PA; Perez-Gonzalez C; Picard-Jean F; Penedo JC; Lafontaine DA Nucleic Acids Res; 2021 Jun; 49(10):5891-5904. PubMed ID: 33963862 [TBL] [Abstract][Full Text] [Related]
4. Metabolite recognition principles and molecular mechanisms underlying riboswitch function. Serganov A; Patel DJ Annu Rev Biophys; 2012; 41():343-70. PubMed ID: 22577823 [TBL] [Abstract][Full Text] [Related]
6. [The adenine riboswitch: a new gene regulation mechanism]. Lemay JF; Lafontaine DA Med Sci (Paris); 2006 Dec; 22(12):1053-9. PubMed ID: 17156726 [TBL] [Abstract][Full Text] [Related]
7. Ligand recognition and helical stacking formation are intimately linked in the SAM-I riboswitch regulatory mechanism. Dussault AM; Dubé A; Jacques F; Grondin JP; Lafontaine DA RNA; 2017 Oct; 23(10):1539-1551. PubMed ID: 28701520 [TBL] [Abstract][Full Text] [Related]
8. Cotranscriptional RNA strand exchange underlies the gene regulation mechanism in a purine-sensing transcriptional riboswitch. Cheng L; White EN; Brandt NL; Yu AM; Chen AA; Lucks JB Nucleic Acids Res; 2022 Nov; 50(21):12001-12018. PubMed ID: 35348734 [TBL] [Abstract][Full Text] [Related]
9. Linking aptamer-ligand binding and expression platform folding in riboswitches: prospects for mechanistic modeling and design. Aboul-ela F; Huang W; Abd Elrahman M; Boyapati V; Li P Wiley Interdiscip Rev RNA; 2015; 6(6):631-50. PubMed ID: 26361734 [TBL] [Abstract][Full Text] [Related]
10. Role of lysine binding residues in the global folding of the lysC riboswitch. Smith-Peter E; Lamontagne AM; Lafontaine DA RNA Biol; 2015; 12(12):1372-82. PubMed ID: 26403229 [TBL] [Abstract][Full Text] [Related]
11. Riboswitch Mechanisms for Regulation of P1 Helix Stability. Stagno JR; Wang YX Int J Mol Sci; 2024 Oct; 25(19):. PubMed ID: 39409011 [TBL] [Abstract][Full Text] [Related]
12. A computational approach for the identification of distant homologs of bacterial riboswitches based on inverse RNA folding. Mukherjee S; Retwitzer MD; Hubbell SM; Meyer MM; Barash D Brief Bioinform; 2023 May; 24(3):. PubMed ID: 36951499 [TBL] [Abstract][Full Text] [Related]
13. Structures of two aptamers with differing ligand specificity reveal ruggedness in the functional landscape of RNA. Knappenberger AJ; Reiss CW; Strobel SA Elife; 2018 Jun; 7():. PubMed ID: 29877798 [TBL] [Abstract][Full Text] [Related]
14. Single transcriptional and translational preQ1 riboswitches adopt similar pre-folded ensembles that follow distinct folding pathways into the same ligand-bound structure. Suddala KC; Rinaldi AJ; Feng J; Mustoe AM; Eichhorn CD; Liberman JA; Wedekind JE; Al-Hashimi HM; Brooks CL; Walter NG Nucleic Acids Res; 2013 Dec; 41(22):10462-75. PubMed ID: 24003028 [TBL] [Abstract][Full Text] [Related]
15. Riboswitches: discovery of drugs that target bacterial gene-regulatory RNAs. Deigan KE; Ferré-D'Amaré AR Acc Chem Res; 2011 Dec; 44(12):1329-38. PubMed ID: 21615107 [TBL] [Abstract][Full Text] [Related]
16. Determination of riboswitch structures: light at the end of the tunnel? Serganov A RNA Biol; 2010; 7(1):98-103. PubMed ID: 20061809 [TBL] [Abstract][Full Text] [Related]
17. Structures of riboswitch RNA reaction states by mix-and-inject XFEL serial crystallography. Stagno JR; Liu Y; Bhandari YR; Conrad CE; Panja S; Swain M; Fan L; Nelson G; Li C; Wendel DR; White TA; Coe JD; Wiedorn MO; Knoska J; Oberthuer D; Tuckey RA; Yu P; Dyba M; Tarasov SG; Weierstall U; Grant TD; Schwieters CD; Zhang J; Ferré-D'Amaré AR; Fromme P; Draper DE; Liang M; Hunter MS; Boutet S; Tan K; Zuo X; Ji X; Barty A; Zatsepin NA; Chapman HN; Spence JC; Woodson SA; Wang YX Nature; 2017 Jan; 541(7636):242-246. PubMed ID: 27841871 [TBL] [Abstract][Full Text] [Related]
18. Flipping the script: Understanding riboswitches from an alternative perspective. Olenginski LT; Spradlin SF; Batey RT J Biol Chem; 2024 Mar; 300(3):105730. PubMed ID: 38336293 [TBL] [Abstract][Full Text] [Related]
19. The distributions, mechanisms, and structures of metabolite-binding riboswitches. Barrick JE; Breaker RR Genome Biol; 2007; 8(11):R239. PubMed ID: 17997835 [TBL] [Abstract][Full Text] [Related]
20. Cooperative and directional folding of the preQ1 riboswitch aptamer domain. Feng J; Walter NG; Brooks CL J Am Chem Soc; 2011 Mar; 133(12):4196-9. PubMed ID: 21375305 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]