These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

435 related articles for article (PubMed ID: 28375743)

  • 1. Engineering and In Vivo Applications of Riboswitches.
    Hallberg ZF; Su Y; Kitto RZ; Hammond MC
    Annu Rev Biochem; 2017 Jun; 86():515-539. PubMed ID: 28375743
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Developing Fluorogenic Riboswitches for Imaging Metabolite Concentration Dynamics in Bacterial Cells.
    Litke JL; You M; Jaffrey SR
    Methods Enzymol; 2016; 572():315-33. PubMed ID: 27241761
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Imaging metabolite dynamics in living cells using a Spinach-based riboswitch.
    You M; Litke JL; Jaffrey SR
    Proc Natl Acad Sci U S A; 2015 May; 112(21):E2756-65. PubMed ID: 25964329
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Tuning riboswitch-mediated gene regulation by rational control of aptamer ligand binding properties.
    Rode AB; Endoh T; Sugimoto N
    Angew Chem Int Ed Engl; 2015 Jan; 54(3):905-9. PubMed ID: 25470002
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Rational Re-engineering of a Transcriptional Silencing PreQ1 Riboswitch.
    Wu MC; Lowe PT; Robinson CJ; Vincent HA; Dixon N; Leigh J; Micklefield J
    J Am Chem Soc; 2015 Jul; 137(28):9015-21. PubMed ID: 26106809
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Requirements for efficient ligand-gated co-transcriptional switching in designed variants of the B. subtilis pbuE adenine-responsive riboswitch in E. coli.
    Drogalis LK; Batey RT
    PLoS One; 2020; 15(12):e0243155. PubMed ID: 33259551
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Design of modular "plug-and-play" expression platforms derived from natural riboswitches for engineering novel genetically encodable RNA regulatory devices.
    Trausch JJ; Batey RT
    Methods Enzymol; 2015; 550():41-71. PubMed ID: 25605380
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dual genetic selection of synthetic riboswitches in Escherichia coli.
    Nomura Y; Yokobayashi Y
    Methods Mol Biol; 2014; 1111():131-40. PubMed ID: 24549616
    [TBL] [Abstract][Full Text] [Related]  

  • 9. RNA aptamers as genetic control devices: the potential of riboswitches as synthetic elements for regulating gene expression.
    Berens C; Groher F; Suess B
    Biotechnol J; 2015 Feb; 10(2):246-57. PubMed ID: 25676052
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Design of Mammalian ON-Riboswitches Based on Tandemly Fused Aptamer and Ribozyme.
    Mustafina K; Fukunaga K; Yokobayashi Y
    ACS Synth Biol; 2020 Jan; 9(1):19-25. PubMed ID: 31820936
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Linking aptamer-ligand binding and expression platform folding in riboswitches: prospects for mechanistic modeling and design.
    Aboul-ela F; Huang W; Abd Elrahman M; Boyapati V; Li P
    Wiley Interdiscip Rev RNA; 2015; 6(6):631-50. PubMed ID: 26361734
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In vitro analysis of riboswitch-Spinach aptamer fusions as metabolite-sensing fluorescent biosensors.
    Kellenberger CA; Hammond MC
    Methods Enzymol; 2015; 550():147-72. PubMed ID: 25605385
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Modular riboswitch toolsets for synthetic genetic control in diverse bacterial species.
    Robinson CJ; Vincent HA; Wu MC; Lowe PT; Dunstan MS; Leys D; Micklefield J
    J Am Chem Soc; 2014 Jul; 136(30):10615-24. PubMed ID: 24971878
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Development of Artificial Riboswitches for Monitoring of Naringenin In Vivo.
    Jang S; Jang S; Xiu Y; Kang TJ; Lee SH; Koffas MAG; Jung GY
    ACS Synth Biol; 2017 Nov; 6(11):2077-2085. PubMed ID: 28749656
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Therapeutic Applications of Aptamer-Based Riboswitches.
    Lee CH; Han SR; Lee SW
    Nucleic Acid Ther; 2016 Feb; 26(1):44-51. PubMed ID: 26539634
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Live Cell Imaging Using Riboswitch-Spinach tRNA Fusions as Metabolite-Sensing Fluorescent Biosensors.
    Manna S; Kellenberger CA; Hallberg ZF; Hammond MC
    Methods Mol Biol; 2021; 2323():121-140. PubMed ID: 34086278
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Riboswitches: From living biosensors to novel targets of antibiotics.
    Mehdizadeh Aghdam E; Hejazi MS; Barzegar A
    Gene; 2016 Nov; 592(2):244-59. PubMed ID: 27432066
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mechanisms for differentiation between cognate and near-cognate ligands by purine riboswitches.
    Wacker A; Buck J; Richter C; Schwalbe H; Wöhnert J
    RNA Biol; 2012 May; 9(5):672-80. PubMed ID: 22647526
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The dynamic nature of RNA as key to understanding riboswitch mechanisms.
    Haller A; Soulière MF; Micura R
    Acc Chem Res; 2011 Dec; 44(12):1339-48. PubMed ID: 21678902
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Tapping the potential of synthetic riboswitches: reviewing the versatility of the tetracycline aptamer.
    Kelvin D; Suess B
    RNA Biol; 2023 Jan; 20(1):457-468. PubMed ID: 37459466
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 22.