BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 28375819)

  • 41. Biomimetic acellular detoxified glutaraldehyde cross-linked bovine pericardium for tissue engineering.
    Mathapati S; Bishi DK; Guhathakurta S; Cherian KM; Venugopal JR; Ramakrishna S; Verma RS
    Mater Sci Eng C Mater Biol Appl; 2013 Apr; 33(3):1561-72. PubMed ID: 23827609
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Hyaluronic acid on collagen membranes: An experimental study in rats.
    Silva EC; Omonte SV; Martins AG; de Castro HH; Gomes HE; Zenóbio ÉG; de Oliveira PA; Horta MC; Souza PE
    Arch Oral Biol; 2017 Jan; 73():214-222. PubMed ID: 27776288
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Membrane-reinforced three-dimensional electrospun silk fibroin scaffolds for bone tissue engineering.
    Yang SY; Hwang TH; Che L; Oh JS; Ha Y; Ryu W
    Biomed Mater; 2015 Jun; 10(3):035011. PubMed ID: 26106926
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Biocompatibility of Novel Type I Collagen Purified from Tilapia Fish Scale: An In Vitro Comparative Study.
    Tang J; Saito T
    Biomed Res Int; 2015; 2015():139476. PubMed ID: 26491653
    [TBL] [Abstract][Full Text] [Related]  

  • 45. A human-like collagen/chitosan electrospun nanofibrous scaffold from aqueous solution: electrospun mechanism and biocompatibility.
    Chen L; Zhu C; Fan D; Liu B; Ma X; Duan Z; Zhou Y
    J Biomed Mater Res A; 2011 Dec; 99(3):395-409. PubMed ID: 22021187
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Electrospun protein fibers as matrices for tissue engineering.
    Li M; Mondrinos MJ; Gandhi MR; Ko FK; Weiss AS; Lelkes PI
    Biomaterials; 2005 Oct; 26(30):5999-6008. PubMed ID: 15894371
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Bio-inspired in situ crosslinking and mineralization of electrospun collagen scaffolds for bone tissue engineering.
    Dhand C; Ong ST; Dwivedi N; Diaz SM; Venugopal JR; Navaneethan B; Fazil MH; Liu S; Seitz V; Wintermantel E; Beuerman RW; Ramakrishna S; Verma NK; Lakshminarayanan R
    Biomaterials; 2016 Oct; 104():323-38. PubMed ID: 27475728
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Ruthenium-catalyzed photo cross-linking of fibrin-based engineered tissue.
    Bjork JW; Johnson SL; Tranquillo RT
    Biomaterials; 2011 Apr; 32(10):2479-88. PubMed ID: 21196047
    [TBL] [Abstract][Full Text] [Related]  

  • 49. [Comparative study on the degradation rate and regulatory effects of two resorbable collagen membranes during the
    Wang MF; Liu Y; Liu YT
    Zhonghua Kou Qiang Yi Xue Za Zhi; 2024 Apr; 59(4):364-373. PubMed ID: 38548593
    [No Abstract]   [Full Text] [Related]  

  • 50. Fabrication and biocompatibility of novel bilayer scaffold for skin tissue engineering applications.
    Franco RA; Min YK; Yang HM; Lee BT
    J Biomater Appl; 2013 Jan; 27(5):605-15. PubMed ID: 22071350
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Collagen/gold nanoparticle nanocomposites: A potential skin wound healing biomaterial.
    Akturk O; Kismet K; Yasti AC; Kuru S; Duymus ME; Kaya F; Caydere M; Hucumenoglu S; Keskin D
    J Biomater Appl; 2016 Aug; 31(2):283-301. PubMed ID: 27095659
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Nanofibrous asymmetric membranes self-organized from chemically heterogeneous electrospun mats for skin tissue engineering.
    Wu C; Chen T; Xin Y; Zhang Z; Ren Z; Lei J; Chu B; Wang Y; Tang S
    Biomed Mater; 2016 Jun; 11(3):035019. PubMed ID: 27327625
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Surface modification of electrospun PLGA scaffold with collagen for bioengineered skin substitutes.
    Sadeghi AR; Nokhasteh S; Molavi AM; Khorsand-Ghayeni M; Naderi-Meshkin H; Mahdizadeh A
    Mater Sci Eng C Mater Biol Appl; 2016 Sep; 66():130-137. PubMed ID: 27207046
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Preparation and Characterization of Tilapia Collagen-Thermoplastic Polyurethane Composite Nanofiber Membranes.
    Wu S; Yang L; Chen J
    Mar Drugs; 2022 Jun; 20(7):. PubMed ID: 35877730
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Fabrication and evaluation of biomimetic-synthetic nanofibrous composites for soft tissue regeneration.
    Gee AO; Baker BM; Silverstein AM; Montero G; Esterhai JL; Mauck RL
    Cell Tissue Res; 2012 Mar; 347(3):803-13. PubMed ID: 22287042
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Role of solvent-mediated carbodiimide cross-linking in fabrication of electrospun gelatin nanofibrous membranes as ophthalmic biomaterials.
    Chou SF; Luo LJ; Lai JY; Ma DH
    Mater Sci Eng C Mater Biol Appl; 2017 Feb; 71():1145-1155. PubMed ID: 27987671
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Repair of Avascular Meniscus Tears with Electrospun Collagen Scaffolds Seeded with Human Cells.
    Baek J; Sovani S; Glembotski NE; Du J; Jin S; Grogan SP; D'Lima DD
    Tissue Eng Part A; 2016 Mar; 22(5-6):436-48. PubMed ID: 26842062
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Improved cellular response of chemically crosslinked collagen incorporated hydroxyethyl cellulose/poly(vinyl) alcohol nanofibers scaffold.
    Zulkifli FH; Jahir Hussain FS; Abdull Rasad MS; Mohd Yusoff M
    J Biomater Appl; 2015 Feb; 29(7):1014-27. PubMed ID: 25186524
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Alkaline phosphatase immobilization onto Bio-Gide® and Bio-Oss® for periodontal and bone regeneration.
    Oortgiesen DA; Plachokova AS; Geenen C; Meijer GJ; Walboomers XF; van den Beucken JJ; Jansen JA
    J Clin Periodontol; 2012 Jun; 39(6):546-55. PubMed ID: 22519301
    [TBL] [Abstract][Full Text] [Related]  

  • 60. The reparative response to cross-linked collagen-based scaffolds in a rat spinal cord gap model.
    Cholas RH; Hsu HP; Spector M
    Biomaterials; 2012 Mar; 33(7):2050-9. PubMed ID: 22182744
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.