These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

225 related articles for article (PubMed ID: 28376059)

  • 1. Skeletal assessment with finite element analysis: relevance, pitfalls and interpretation.
    Campbell GM; Glüer CC
    Curr Opin Rheumatol; 2017 Jul; 29(4):402-409. PubMed ID: 28376059
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Quantitative computed tomography-based predictions of vertebral strength in anterior bending.
    Buckley JM; Cheng L; Loo K; Slyfield C; Xu Z
    Spine (Phila Pa 1976); 2007 Apr; 32(9):1019-27. PubMed ID: 17450078
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Finite Element-Based Mechanical Assessment of Bone Quality on the Basis of In Vivo Images.
    Pahr DH; Zysset PK
    Curr Osteoporos Rep; 2016 Dec; 14(6):374-385. PubMed ID: 27714581
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Relationships between femoral strength evaluated by nonlinear finite element analysis and BMD, material distribution and geometric morphology.
    Gong H; Zhang M; Fan Y; Kwok WL; Leung PC
    Ann Biomed Eng; 2012 Jul; 40(7):1575-85. PubMed ID: 22258889
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Finite element analysis of the hip and spine based on quantitative computed tomography.
    Carpenter RD
    Curr Osteoporos Rep; 2013 Jun; 11(2):156-62. PubMed ID: 23504495
    [TBL] [Abstract][Full Text] [Related]  

  • 6. X-ray-verified fractures are associated with finite element analysis-derived bone strength and trabecular microstructure in young adult men.
    Rudäng R; Darelid A; Nilsson M; Mellström D; Ohlsson C; Lorentzon M
    J Bone Miner Res; 2013 Nov; 28(11):2305-16. PubMed ID: 23658040
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Prediction of strength and strain of the proximal femur by a CT-based finite element method.
    Bessho M; Ohnishi I; Matsuyama J; Matsumoto T; Imai K; Nakamura K
    J Biomech; 2007; 40(8):1745-53. PubMed ID: 17034798
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Development and experimental validation of a finite element model of total ankle replacement.
    Terrier A; Larrea X; Guerdat J; Crevoisier X
    J Biomech; 2014 Feb; 47(3):742-5. PubMed ID: 24393809
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Noninvasive assessments of bone strength.
    Bonnick SL
    Curr Opin Endocrinol Diabetes Obes; 2007 Dec; 14(6):451-7. PubMed ID: 17982351
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Factors affecting subject-specific finite element models of implant-fitted rat bone specimens: critical analysis of a technical protocol.
    Piccinini M; Cugnoni J; Botsis J; Zacchetti G; Ammann P; Wiskott A
    Comput Methods Biomech Biomed Engin; 2014; 17(13):1403-17. PubMed ID: 23724864
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Prediction of the vertebral strength using a finite element model derived from low-dose biplanar imaging: benefits of subject-specific material properties.
    Sapin-de Brosses E; Jolivet E; Travert C; Mitton D; Skalli W
    Spine (Phila Pa 1976); 2012 Feb; 37(3):E156-62. PubMed ID: 22290213
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Predicting bone strength from CT data: Clinical applications.
    Viceconti M
    Morphologie; 2019 Dec; 103(343):180-186. PubMed ID: 31630964
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fast estimation of Colles' fracture load of the distal section of the radius by homogenized finite element analysis based on HR-pQCT.
    Hosseini HS; Dünki A; Fabech J; Stauber M; Vilayphiou N; Pahr D; Pretterklieber M; Wandel J; Rietbergen BV; Zysset PK
    Bone; 2017 Apr; 97():65-75. PubMed ID: 28069517
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Patient-specific finite element modeling of bones.
    Poelert S; Valstar E; Weinans H; Zadpoor AA
    Proc Inst Mech Eng H; 2013 Apr; 227(4):464-78. PubMed ID: 23637222
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Prediction of bone strength using a quantitative computed tomography based finite element method].
    Bessho M; Ohnishi I; Kaneko M; Ohashi S; Tobita K; Matsumoto T; Imai K; Nakamura K
    Clin Calcium; 2011 Jul; 21(7):1021-7. PubMed ID: 21719982
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Finite element modeling of the human thoracolumbar spine.
    Liebschner MA; Kopperdahl DL; Rosenberg WS; Keaveny TM
    Spine (Phila Pa 1976); 2003 Mar; 28(6):559-65. PubMed ID: 12642762
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Integrating micro CT indices, CT imaging and computational modelling to assess the mechanical performance of fluoride treated bone.
    Sreenivasan D; Watson M; Callon K; Dray M; Das R; Grey A; Cornish J; Fernandez J
    Med Eng Phys; 2013 Dec; 35(12):1793-800. PubMed ID: 23993994
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The biomechanics of human femurs in axial and torsional loading: comparison of finite element analysis, human cadaveric femurs, and synthetic femurs.
    Papini M; Zdero R; Schemitsch EH; Zalzal P
    J Biomech Eng; 2007 Feb; 129(1):12-9. PubMed ID: 17227093
    [TBL] [Abstract][Full Text] [Related]  

  • 19. To what extent can linear finite element models of human femora predict failure under stance and fall loading configurations?
    Schileo E; Balistreri L; Grassi L; Cristofolini L; Taddei F
    J Biomech; 2014 Nov; 47(14):3531-8. PubMed ID: 25261321
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparison of quantitative computed tomography-based measures in predicting vertebral compressive strength.
    Buckley JM; Loo K; Motherway J
    Bone; 2007 Mar; 40(3):767-74. PubMed ID: 17174619
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.