BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

189 related articles for article (PubMed ID: 28376138)

  • 1. Numerical and Experimental Investigation on Water-Me
    Yang Y; Zhou XL; Zhou NF; Shao WQ; Tao LR
    Cryo Letters; 2017; 38(1):37-42. PubMed ID: 28376138
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Controlled loading of cryoprotectants (CPAs) to oocyte with linear and complex CPA profiles on a microfluidic platform.
    Heo YS; Lee HJ; Hassell BA; Irimia D; Toth TL; Elmoazzen H; Toner M
    Lab Chip; 2011 Oct; 11(20):3530-7. PubMed ID: 21887438
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Microfluidic method reduces osmotic stress injury to oocytes during cryoprotectant addition and removal processes in porcine oocytes.
    Guo Y; Yang Y; Yi X; Zhou X
    Cryobiology; 2019 Oct; 90():63-70. PubMed ID: 31449779
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mathematically optimized cryoprotectant equilibration procedures for cryopreservation of human oocytes.
    Davidson AF; Benson JD; Higgins AZ
    Theor Biol Med Model; 2014 Mar; 11():13. PubMed ID: 24649826
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An integrated microfluidic device for single cell trapping and osmotic behavior investigation of mouse oocytes.
    Guo X; Chen Z; Memon K; Chen X; Zhao G
    Cryobiology; 2020 Feb; 92():267-271. PubMed ID: 31585113
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Slow and steady cell shrinkage reduces osmotic stress in bovine and murine oocyte and zygote vitrification.
    Lai D; Ding J; Smith GW; Smith GD; Takayama S
    Hum Reprod; 2015 Jan; 30(1):37-45. PubMed ID: 25355589
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Loading equine oocytes with cryoprotective agents captured with a finite element method model.
    Içli S; Soleimani M; Oldenhof H; Sieme H; Wriggers P; Wolkers WF
    Sci Rep; 2021 Oct; 11(1):19812. PubMed ID: 34615933
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Low-cost Easy-to-Fabricate Sandwich-Structured Microdevice for Controllable Removal of Extracellular Cryoprotective Agents with High Efficiency.
    Memon K; Cheng Y; Panhwar F; Chen ZR; Haider Z; Afridi S; Hu P; Zhao G
    Cryo Letters; 2018; 39(1):7-13. PubMed ID: 29734411
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bovine oocyte membrane permeability and cryosurvival: Effects of different cryoprotectants and calcium in the vitrification media.
    Marques CC; Santos-Silva C; Rodrigues C; Matos JE; Moura T; Baptista MC; Horta AEM; Bessa RJB; Alves SP; Soveral G; Pereira RMLN
    Cryobiology; 2018 Apr; 81():4-11. PubMed ID: 29524383
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Transport processes in equine oocytes and ovarian tissue during loading with cryoprotective solutions.
    Lotz J; Içli S; Liu D; Caliskan S; Sieme H; Wolkers WF; Oldenhof H
    Biochim Biophys Acta Gen Subj; 2021 Feb; 1865(2):129797. PubMed ID: 33212229
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Improved low-CPA vitrification of mouse oocytes using quartz microcapillary.
    Choi JK; Huang H; He X
    Cryobiology; 2015 Jun; 70(3):269-72. PubMed ID: 25869750
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Quantitative investigations on the effects of exposure durations to the combined cryoprotective agents on mouse oocyte vitrification procedures.
    Wang L; Liu J; Zhou GB; Hou YP; Li JJ; Zhu SE
    Biol Reprod; 2011 Nov; 85(5):884-94. PubMed ID: 21697515
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of cryoprotectant concentration on bovine oocyte permeability and comparison of two membrane permeability modelling approaches.
    García-Martínez T; Mogas T; Mullen SF; Martínez-Rodero I; Gulieva RE; Higgins AZ
    Sci Rep; 2021 Jul; 11(1):15387. PubMed ID: 34321576
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Appendix C: Automated Vitrification of Mammalian Embryos on a Digital Microfluidic Device.
    Liu J; Pyne DG; Abdelgawad M; Sun Y
    Methods Mol Biol; 2017; 1568():309-316. PubMed ID: 28421507
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Design and Optimization of Microfluidic Chips Used for Mixing Cryoprotectants].
    Zhou X; Yi X; Zhou N; Yang Y
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2016 Jun; 33(3):461-5. PubMed ID: 29709144
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Development of an Open Microfluidic Platform for Oocyte One-Stop Vitrification with Cryotop Method.
    Miao S; Guo C; Jiang Z; Wei HX; Jiang X; Gu J; Hai Z; Wang T; Liu YH
    Biosensors (Basel); 2022 Sep; 12(9):. PubMed ID: 36140151
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Optimising vitrification of human oocytes using multiple cryoprotectants and morphological and functional assessment.
    Seet VY; Al-Samerria S; Wong J; Stanger J; Yovich JL; Almahbobi G
    Reprod Fertil Dev; 2013; 25(6):918-26. PubMed ID: 22967503
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Forced-convective vitrification with liquid cryogens.
    Lyu SR; Huang JH; Shih WH; Chen YJ; Hsieh WH
    Cryobiology; 2013 Jun; 66(3):318-25. PubMed ID: 23545291
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of cryoprotectant addition and washout methods on the viability of precision-cut liver slices.
    Guan N; Blomsma SA; van Midwoud PM; Fahy GM; Groothuis GM; de Graaf IA
    Cryobiology; 2012 Dec; 65(3):179-87. PubMed ID: 22722061
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Use of membrane transport models to design cryopreservation procedures for oocytes.
    Caliskan S; Liu D; Oldenhof H; Sieme H; Wolkers WF
    Anim Reprod Sci; 2024 Jun; 267():107536. PubMed ID: 38908169
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.