These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 28376345)

  • 1. The effect of modeled absolute timing variability and relative timing variability on observational learning.
    Grierson LEM; Roberts JW; Welsher AM
    Acta Psychol (Amst); 2017 May; 176():71-77. PubMed ID: 28376345
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dissociable effects of practice variability on learning motor and timing skills.
    Caramiaux B; Bevilacqua F; Wanderley MM; Palmer C
    PLoS One; 2018; 13(3):e0193580. PubMed ID: 29494670
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The primary motor cortex is associated with learning the absolute, but not relative, timing dimension of a task: A tDCS study.
    Apolinário-Souza T; Romano-Silva MA; de Miranda DM; Malloy-Diniz LF; Benda RN; Ugrinowitsch H; Lage GM
    Physiol Behav; 2016 Jun; 160():18-25. PubMed ID: 27018089
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Eye movements are not a prerequisite for learning movement sequence timing through observation.
    Hayes SJ; Timmis MA; Bennett SJ
    Acta Psychol (Amst); 2009 Jul; 131(3):202-8. PubMed ID: 19500770
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Consistent and variable practice conditions: effects on relative and absolute timing.
    Shea CH; Lai Q; Wright DL; Immink M; Black C
    J Mot Behav; 2001 Jun; 33(2):139-52. PubMed ID: 11404210
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Reducing Knowledge of Results About Relative Versus Absolute Timing: Differential Effects on Learning.
    Wulf G; Lee TD; Schmidt RA
    J Mot Behav; 1994 Dec; 26(4):362-369. PubMed ID: 12719193
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Learning from demonstrations: the role of visual search during observational learning from video and point-light models.
    Horn RR; Williams AM; Scott MA
    J Sports Sci; 2002 Mar; 20(3):253-69. PubMed ID: 11999480
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Auditory model enhances relative-timing learning.
    Lai Q; Shea CH; Bruechert L; Little M
    J Mot Behav; 2002 Sep; 34(3):299-307. PubMed ID: 19260180
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Intention in motor learning through observation.
    Badets A; Blandin Y; Shea CH
    Q J Exp Psychol (Hove); 2006 Feb; 59(2):377-86. PubMed ID: 16618640
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The influence of eye-movements on the development of a movement sequence representation during observational and physical practice.
    Massing M; Blandin Y; Panzer S
    Acta Psychol (Amst); 2018 Jan; 182():1-8. PubMed ID: 29107928
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dissociable contributions of motor-execution and action-observation to intermanual transfer.
    Hayes SJ; Andrew M; Elliott D; Roberts JW; Bennett SJ
    Neurosci Lett; 2012 Jan; 506(2):346-50. PubMed ID: 22155050
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of an auditory model on the learning of relative and absolute timing.
    Shea CH; Wulf G; Park JH; Gaunt B
    J Mot Behav; 2001 Jun; 33(2):127-38. PubMed ID: 11404209
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Learning through observation: a combination of expert and novice models favors learning.
    Rohbanfard H; Proteau L
    Exp Brain Res; 2011 Dec; 215(3-4):183-97. PubMed ID: 21986667
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Auditory model: effects on learning under blocked and random practice schedules.
    Han DW; Shea CH
    Res Q Exerc Sport; 2008 Dec; 79(4):476-86. PubMed ID: 19177949
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Scheduling observational and physical practice: influence on the coding of simple motor sequences.
    Ellenbuerger T; Boutin A; Blandin Y; Shea CH; Panzer S
    Q J Exp Psychol (Hove); 2012; 65(7):1260-73. PubMed ID: 22494362
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of knowledge of results (KR) frequency in the learning of a timing skill: absolute versus relative KR frequency.
    Vieira MM; Ugrinowitsch H; Oliveira FS; Gallo LG; Benda RN
    Percept Mot Skills; 2012 Oct; 115(2):360-9. PubMed ID: 23265002
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Observational learning: effects of bandwidth knowledge of results.
    Badets A; Blandin Y
    J Mot Behav; 2005 May; 37(3):211-6. PubMed ID: 15883118
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The effect of variable practice on wheelchair propulsive efficiency and propulsive timing.
    Yao WX; Cordova A; De Sola W; Hart C; Yan AF
    Eur J Phys Rehabil Med; 2012 Jun; 48(2):209-16. PubMed ID: 22071502
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Role of action observation and action in sequence learning and coding.
    Boutin A; Fries U; Panzer S; Shea CH; Blandin Y
    Acta Psychol (Amst); 2010 Oct; 135(2):240-51. PubMed ID: 20673569
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The Effect of Different Combinations of Practice Schedules on Motor Response Stability during Practice.
    Apolinário-Souza T; Lelis-Torres N; Czyż SH; Lage GM
    J Mot Behav; 2023; 55(2):174-185. PubMed ID: 36436833
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.