These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
142 related articles for article (PubMed ID: 28376361)
1. Bioelectrochemical treatment of acid mine drainage (AMD) from an abandoned coal mine under aerobic condition. Peiravi M; Mote SR; Mohanty MK; Liu J J Hazard Mater; 2017 Jul; 333():329-338. PubMed ID: 28376361 [TBL] [Abstract][Full Text] [Related]
2. A novel bioelectrochemical system for chemical-free permanent treatment of acid mine drainage. Pozo G; Pongy S; Keller J; Ledezma P; Freguia S Water Res; 2017 Dec; 126():411-420. PubMed ID: 28987953 [TBL] [Abstract][Full Text] [Related]
3. Removal of heavy metals from acid mine drainage (AMD) using coal fly ash, natural clinker and synthetic zeolites. Ríos CA; Williams CD; Roberts CL J Hazard Mater; 2008 Aug; 156(1-3):23-35. PubMed ID: 18221835 [TBL] [Abstract][Full Text] [Related]
4. Organic substrates as electron donors in permeable reactive barriers for removal of heavy metals from acid mine drainage. Kijjanapanich P; Pakdeerattanamint K; Lens PN; Annachhatre AP Environ Technol; 2012 Dec; 33(22-24):2635-44. PubMed ID: 23437664 [TBL] [Abstract][Full Text] [Related]
5. Compacted sewage sludge as a barrier for tailings: the heavy metal speciation and total organic carbon content in the compacted sludge specimen. Zhang H; Zhang Q; Yang B; Wang J PLoS One; 2014; 9(6):e100932. PubMed ID: 24979755 [TBL] [Abstract][Full Text] [Related]
6. Biological treatment of heavy metals in acid mine drainage using sulfate reducing bioreactors. Sierra-Alvarez R; Karri S; Freeman S; Field JA Water Sci Technol; 2006; 54(2):179-85. PubMed ID: 16939100 [TBL] [Abstract][Full Text] [Related]
7. Co-treatment of acid mine drainage with municipal wastewater: performance evaluation. Hughes TA; Gray NF Environ Sci Pollut Res Int; 2013 Nov; 20(11):7863-77. PubMed ID: 23161500 [TBL] [Abstract][Full Text] [Related]
8. The effect of acidic pH and presence of metals as parameters in establishing a sulfidogenic process in anaerobic reactor. Vieira BF; Couto PT; Sancinetti GP; Klein B; van Zyl D; Rodriguez RP J Environ Sci Health A Tox Hazard Subst Environ Eng; 2016 Aug; 51(10):793-7. PubMed ID: 27222283 [TBL] [Abstract][Full Text] [Related]
9. Recent Developments for Remediating Acidic Mine Waters Using Sulfidogenic Bacteria. Nancucheo I; Bitencourt JAP; Sahoo PK; Alves JO; Siqueira JO; Oliveira G Biomed Res Int; 2017; 2017():7256582. PubMed ID: 29119111 [TBL] [Abstract][Full Text] [Related]
10. Sequentially recover heavy metals from smelting wastewater using bioelectrochemical system coupled with thermoelectric generators. Ai C; Yan Z; Hou S; Huo Q; Chai L; Qiu G; Zeng W Ecotoxicol Environ Saf; 2020 Dec; 205():111174. PubMed ID: 32853867 [TBL] [Abstract][Full Text] [Related]
11. A preliminary study to design a floating treatment wetland for remediating acid mine drainage-impacted water using vetiver grass (Chrysopogon zizanioides). Kiiskila JD; Sarkar D; Feuerstein KA; Datta R Environ Sci Pollut Res Int; 2017 Dec; 24(36):27985-27993. PubMed ID: 28990146 [TBL] [Abstract][Full Text] [Related]
12. Recovery of Metals from Acid Mine Drainage by Bioelectrochemical System Inoculated with a Novel Exoelectrogen, Ai C; Hou S; Yan Z; Zheng X; Amanze C; Chai L; Qiu G; Zeng W Microorganisms; 2019 Dec; 8(1):. PubMed ID: 31878294 [TBL] [Abstract][Full Text] [Related]
13. Long-term performance of a UASB reactor treating acid mine drainage: effects of sulfate loading rate, hydraulic retention time, and COD/SO Cunha MP; Ferraz RM; Sancinetti GP; Rodriguez RP Biodegradation; 2019 Feb; 30(1):47-58. PubMed ID: 30406872 [TBL] [Abstract][Full Text] [Related]
14. Sequential hydrotalcite precipitation and biological sulfate reduction for acid mine drainage treatment. Yan S; Cheng KY; Morris C; Douglas G; Ginige MP; Zheng G; Zhou L; Kaksonen AH Chemosphere; 2020 Aug; 252():126570. PubMed ID: 32443266 [TBL] [Abstract][Full Text] [Related]
15. Phosphorus removal by acid mine drainage sludge from secondary effluents of municipal wastewater treatment plants. Wei X; Viadero RC; Bhojappa S Water Res; 2008 Jul; 42(13):3275-84. PubMed ID: 18490048 [TBL] [Abstract][Full Text] [Related]
16. Bioelectrochemical recovery of Cu, Pb, Cd, and Zn from dilute solutions. Modin O; Wang X; Wu X; Rauch S; Fedje KK J Hazard Mater; 2012 Oct; 235-236():291-7. PubMed ID: 22910451 [TBL] [Abstract][Full Text] [Related]
17. Two-stage combined treatment of acid mine drainage and municipal wastewater. Deng D; Lin LS Water Sci Technol; 2013; 67(5):1000-7. PubMed ID: 23416591 [TBL] [Abstract][Full Text] [Related]
18. High rate of biological removal of sulfate, organic matter, and metals in UASB reactor to treat synthetic acid mine drainage and cheese whey wastewater as carbon source. Sampaio GF; Dos Santos AM; da Costa PR; Rodriguez RP; Sancinetti GP Water Environ Res; 2020 Feb; 92(2):245-254. PubMed ID: 31472092 [TBL] [Abstract][Full Text] [Related]
19. Bioremediation of acid mine drainage coupled with domestic wastewater treatment. Sánchez-Andrea I; Triana D; Sanz JL Water Sci Technol; 2012; 66(11):2425-31. PubMed ID: 23032774 [TBL] [Abstract][Full Text] [Related]
20. Use of coal mining waste for the removal of acidity and metal ions Al (III), Fe (III) and Mn (II) in acid mine drainage. Geremias R; Laus R; Macan JM; Pedrosa RC; Laranjeira MC; Silvano J; Fávere FV Environ Technol; 2008 Aug; 29(8):863-9. PubMed ID: 18724641 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]