These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 28376619)

  • 1. Probing a Continuous Polar Defect: A Reaction Coordinate for Pore Formation in Lipid Membranes.
    Hub JS; Awasthi N
    J Chem Theory Comput; 2017 May; 13(5):2352-2366. PubMed ID: 28376619
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Simulations of Pore Formation in Lipid Membranes: Reaction Coordinates, Convergence, Hysteresis, and Finite-Size Effects.
    Awasthi N; Hub JS
    J Chem Theory Comput; 2016 Jul; 12(7):3261-9. PubMed ID: 27254744
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Joint Reaction Coordinate for Computing the Free-Energy Landscape of Pore Nucleation and Pore Expansion in Lipid Membranes.
    Hub JS
    J Chem Theory Comput; 2021 Feb; 17(2):1229-1239. PubMed ID: 33427469
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Antimicrobial Peptide Simulations and the Influence of Force Field on the Free Energy for Pore Formation in Lipid Bilayers.
    Bennett WF; Hong CK; Wang Y; Tieleman DP
    J Chem Theory Comput; 2016 Sep; 12(9):4524-33. PubMed ID: 27529120
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The importance of membrane defects-lessons from simulations.
    Bennett WF; Tieleman DP
    Acc Chem Res; 2014 Aug; 47(8):2244-51. PubMed ID: 24892900
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Free energy of hydrophilic and hydrophobic pores in lipid bilayers by free energy perturbation of a restraint.
    Dixit M; Lazaridis T
    J Chem Phys; 2020 Aug; 153(5):054101. PubMed ID: 32770888
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Metastable Prepores in Tension-Free Lipid Bilayers.
    Ting CL; Awasthi N; Müller M; Hub JS
    Phys Rev Lett; 2018 Mar; 120(12):128103. PubMed ID: 29694074
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Pore formation coupled to ion transport through lipid membranes as induced by transmembrane ionic charge imbalance: atomistic molecular dynamics study.
    Gurtovenko AA; Vattulainen I
    J Am Chem Soc; 2005 Dec; 127(50):17570-1. PubMed ID: 16351063
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Molecular dynamics simulation study of the effect of DMSO on structural and permeation properties of DMPC lipid bilayers.
    Lin J; Novak B; Moldovan D
    J Phys Chem B; 2012 Feb; 116(4):1299-308. PubMed ID: 22191390
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Pore formation in lipid membrane II: Energy landscape under external stress.
    Akimov SA; Volynsky PE; Galimzyanov TR; Kuzmin PI; Pavlov KV; Batishchev OV
    Sci Rep; 2017 Oct; 7(1):12509. PubMed ID: 28970526
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The influence of cholesterol on interactions and dynamics of ibuprofen in a lipid bilayer.
    Khajeh A; Modarress H
    Biochim Biophys Acta; 2014 Oct; 1838(10):2431-8. PubMed ID: 24911406
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of cholesterol on behavior of 5-fluorouracil (5-FU) in a DMPC lipid bilayer, a molecular dynamics study.
    Khajeh A; Modarress H
    Biophys Chem; 2014; 187-188():43-50. PubMed ID: 24583772
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Accelerating potential of mean force calculations for lipid membrane permeation: System size, reaction coordinate, solute-solute distance, and cutoffs.
    Nitschke N; Atkovska K; Hub JS
    J Chem Phys; 2016 Sep; 145(12):125101. PubMed ID: 27782650
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Free energy of a trans-membrane pore calculated from atomistic molecular dynamics simulations.
    Wohlert J; den Otter WK; Edholm O; Briels WJ
    J Chem Phys; 2006 Apr; 124(15):154905. PubMed ID: 16674263
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Atomistic simulations of pore formation and closure in lipid bilayers.
    Bennett WF; Sapay N; Tieleman DP
    Biophys J; 2014 Jan; 106(1):210-9. PubMed ID: 24411253
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Pore formation in lipid membrane I: Continuous reversible trajectory from intact bilayer through hydrophobic defect to transversal pore.
    Akimov SA; Volynsky PE; Galimzyanov TR; Kuzmin PI; Pavlov KV; Batishchev OV
    Sci Rep; 2017 Sep; 7(1):12152. PubMed ID: 28939906
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Free energetics of arginine permeation into model DMPC lipid bilayers: coupling of effective counterion concentration and lateral bilayer dimensions.
    Hu Y; Ou S; Patel S
    J Phys Chem B; 2013 Oct; 117(39):11641-53. PubMed ID: 23888915
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Defect formation of lytic peptides in lipid membranes and their influence on the thermodynamic properties of the pore environment.
    Oliynyk V; Kaatze U; Heimburg T
    Biochim Biophys Acta; 2007 Feb; 1768(2):236-45. PubMed ID: 17141732
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Lipid Flip-Flop and Pore Nucleation on Zwitterionic Bilayers are Asymmetric under Ionic Imbalance.
    Lin J; Dargazany R; Alexander-Katz A
    Small; 2017 Jun; 13(22):. PubMed ID: 28426163
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Investigating Hydrophilic Pores in Model Lipid Bilayers Using Molecular Simulations: Correlating Bilayer Properties with Pore-Formation Thermodynamics.
    Hu Y; Sinha SK; Patel S
    Langmuir; 2015 Jun; 31(24):6615-31. PubMed ID: 25614183
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.