BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

265 related articles for article (PubMed ID: 28376783)

  • 1. Genome-wide analysis of microRNA targeting impacted by SNPs in cucumber genome.
    Ling J; Luo Z; Liu F; Mao Z; Yang Y; Xie B
    BMC Genomics; 2017 Apr; 18(1):275. PubMed ID: 28376783
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Grafting-responsive miRNAs in cucumber and pumpkin seedlings identified by high-throughput sequencing at whole genome level.
    Li C; Li Y; Bai L; Zhang T; He C; Yan Y; Yu X
    Physiol Plant; 2014 Aug; 151(4):406-22. PubMed ID: 24279842
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A combined approach of high-throughput sequencing and degradome analysis reveals tissue specific expression of microRNAs and their targets in cucumber.
    Mao W; Li Z; Xia X; Li Y; Yu J
    PLoS One; 2012; 7(3):e33040. PubMed ID: 22479356
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Identification of fruit related microRNAs in cucumber (Cucumis sativus L.) using high-throughput sequencing technology.
    Ye X; Song T; Liu C; Feng H; Liu Z
    Hereditas; 2014 Dec; 151(6):220-8. PubMed ID: 25588308
    [TBL] [Abstract][Full Text] [Related]  

  • 5. MicroRNAs and their targets in cucumber shoot apices in response to temperature and photoperiod.
    Zhang X; Lai Y; Zhang W; Ahmad J; Qiu Y; Zhang X; Duan M; Liu T; Song J; Wang H; Li X
    BMC Genomics; 2018 Nov; 19(1):819. PubMed ID: 30442111
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The complete chloroplast genome sequence of Cucumis sativus var. Hardwickii, the wild progenitor of cultivated cucumber.
    Liu B; Zhang D; Gao LZ
    Mitochondrial DNA A DNA Mapp Seq Anal; 2016 Nov; 27(6):4627-4628. PubMed ID: 26681521
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Small RNA sequencing identifies cucumber miRNA roles in waterlogging-triggered adventitious root primordia formation.
    Xu X; Wang K; Pan J; Chen X
    Mol Biol Rep; 2019 Dec; 46(6):6381-6389. PubMed ID: 31538299
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Genome-wide analysis of the bZIP transcription factors in cucumber.
    Baloglu MC; Eldem V; Hajyzadeh M; Unver T
    PLoS One; 2014; 9(4):e96014. PubMed ID: 24760072
    [TBL] [Abstract][Full Text] [Related]  

  • 9. High-throughput sequencing, characterization and detection of new and conserved cucumber miRNAs.
    Martínez G; Forment J; Llave C; Pallás V; Gómez G
    PLoS One; 2011; 6(5):e19523. PubMed ID: 21603611
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Reliable reference genes for normalization of gene expression in cucumber grown under different nitrogen nutrition.
    Warzybok A; Migocka M
    PLoS One; 2013; 8(9):e72887. PubMed ID: 24058446
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Identification and expression profiling of Vigna mungo microRNAs from leaf small RNA transcriptome by deep sequencing.
    Paul S; Kundu A; Pal A
    J Integr Plant Biol; 2014 Jan; 56(1):15-23. PubMed ID: 24138283
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Identification of miRNAs and Their Target Genes Involved in Cucumber Fruit Expansion Using Small RNA and Degradome Sequencing.
    Sun Y; Luo W; Chang H; Li Z; Zhou J; Li X; Zheng J; Hao M
    Biomolecules; 2019 Sep; 9(9):. PubMed ID: 31547414
    [TBL] [Abstract][Full Text] [Related]  

  • 13. High-Throughput Sequencing Identifies Novel and Conserved Cucumber (Cucumis sativus L.) microRNAs in Response to Cucumber Green Mottle Mosaic Virus Infection.
    Liu HW; Luo LX; Liang CQ; Jiang N; Liu PF; Li JQ
    PLoS One; 2015; 10(6):e0129002. PubMed ID: 26076360
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Selection and mutation on microRNA target sequences during rice evolution.
    Guo X; Gui Y; Wang Y; Zhu QH; Helliwell C; Fan L
    BMC Genomics; 2008 Oct; 9():454. PubMed ID: 18831738
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Chromosome rearrangements during domestication of cucumber as revealed by high-density genetic mapping and draft genome assembly.
    Yang L; Koo DH; Li Y; Zhang X; Luan F; Havey MJ; Jiang J; Weng Y
    Plant J; 2012 Sep; 71(6):895-906. PubMed ID: 22487099
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Whole-Genome Resequencing of a Cucumber Chromosome Segment Substitution Line and Its Recurrent Parent to Identify Candidate Genes Governing Powdery Mildew Resistance.
    Xu Q; Shi Y; Yu T; Xu X; Yan Y; Qi X; Chen X
    PLoS One; 2016; 11(10):e0164469. PubMed ID: 27764118
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Identifying optimal reference genes for the normalization of microRNA expression in cucumber under viral stress.
    Liang C; Hao J; Meng Y; Luo L; Li J
    PLoS One; 2018; 13(3):e0194436. PubMed ID: 29543906
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Genome-wide identification of SNPs in microRNA genes and the SNP effects on microRNA target binding and biogenesis.
    Gong J; Tong Y; Zhang HM; Wang K; Hu T; Shan G; Sun J; Guo AY
    Hum Mutat; 2012 Jan; 33(1):254-63. PubMed ID: 22045659
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Integrative Analyses of Nontargeted Volatile Profiling and Transcriptome Data Provide Molecular Insight into VOC Diversity in Cucumber Plants (Cucumis sativus).
    Wei G; Tian P; Zhang F; Qin H; Miao H; Chen Q; Hu Z; Cao L; Wang M; Gu X; Huang S; Chen M; Wang G
    Plant Physiol; 2016 Sep; 172(1):603-18. PubMed ID: 27457123
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Vascular tissue-specific gene expression of xylem sap glycine-rich proteins in root and their localization in the walls of metaxylem vessels in cucumber.
    Sakuta C; Satoh S
    Plant Cell Physiol; 2000 May; 41(5):627-38. PubMed ID: 10929946
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.