These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

256 related articles for article (PubMed ID: 28376803)

  • 1. Characterization of biomechanical properties of cells through dielectrophoresis-based cell stretching and actin cytoskeleton modeling.
    Bai G; Li Y; Chu HK; Wang K; Tan Q; Xiong J; Sun D
    Biomed Eng Online; 2017 Apr; 16(1):41. PubMed ID: 28376803
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Influence of semiflexible structural features of actin cytoskeleton on cell stiffness based on actin microstructural modeling.
    Wang K; Sun D
    J Biomech; 2012 Jul; 45(11):1900-8. PubMed ID: 22695639
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dissecting the contribution of actin and vimentin intermediate filaments to mechanical phenotype of suspended cells using high-throughput deformability measurements and computational modeling.
    Gladilin E; Gonzalez P; Eils R
    J Biomech; 2014 Aug; 47(11):2598-605. PubMed ID: 24952458
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Global architecture of the F-actin cytoskeleton regulates cell shape-dependent endothelial mechanotransduction.
    Shao Y; Mann JM; Chen W; Fu J
    Integr Biol (Camb); 2014 Mar; 6(3):300-11. PubMed ID: 24435061
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A portable and integrated instrument for cell manipulation by dielectrophoresis.
    Burgarella S; Di Bari M
    Electrophoresis; 2015 Jul; 36(13):1466-70. PubMed ID: 25808778
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dielectrophoresis-Based Method for Measuring the Multiangle Mechanical Properties of Biological Cells.
    Zhu B; Li W; Zhu M; Hsu PL; Sun L; Yang H
    Biomed Res Int; 2020; 2020():5358181. PubMed ID: 32337255
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Single cell active force generation under dynamic loading - Part II: Active modelling insights.
    Reynolds NH; McGarry JP
    Acta Biomater; 2015 Nov; 27():251-263. PubMed ID: 26360595
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The effect of remodelling and contractility of the actin cytoskeleton on the shear resistance of single cells: a computational and experimental investigation.
    Dowling EP; Ronan W; Ofek G; Deshpande VS; McMeeking RM; Athanasiou KA; McGarry JP
    J R Soc Interface; 2012 Dec; 9(77):3469-79. PubMed ID: 22809850
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Single cell active force generation under dynamic loading - Part I: AFM experiments.
    Weafer PP; Reynolds NH; Jarvis SP; McGarry JP
    Acta Biomater; 2015 Nov; 27():236-250. PubMed ID: 26360596
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Amplification of actin polymerization forces.
    Dmitrieff S; Nédélec F
    J Cell Biol; 2016 Mar; 212(7):763-6. PubMed ID: 27002174
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cellular Microbiaxial Stretching to Measure a Single-Cell Strain Energy Density Function.
    Win Z; Buksa JM; Steucke KE; Gant Luxton GW; Barocas VH; Alford PW
    J Biomech Eng; 2017 Jul; 139(7):0710061-07100610. PubMed ID: 28397957
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Finite Element Bendo-Tensegrity Model of Eukaryotic Cell.
    Bansod YD; Matsumoto T; Nagayama K; Bursa J
    J Biomech Eng; 2018 Oct; 140(10):. PubMed ID: 30029237
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Effects of different cyclic mechanical stretching loads on human tenocytic cytoskeleton in vitro].
    Deng YS; Tang KL; Xie MM; Cao HH; Chen L; Chang DH; Dong SW; Tao X; Li H; Yang HF; Xu JZ
    Zhonghua Yi Xue Za Zhi; 2011 Jul; 91(25):1780-5. PubMed ID: 22093739
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An In Vitro Model System to Test Mechano-microbiological Interactions Between Bacteria and Host Cells.
    Santos LC; Munteanu EL; Biais N
    Methods Mol Biol; 2016; 1365():195-212. PubMed ID: 26498786
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mechanical modeling of red blood cells during optical stretching.
    Tan Y; Sun D; Huang W
    J Biomech Eng; 2010 Apr; 132(4):044504. PubMed ID: 20387977
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Force Production by a Bundle of Growing Actin Filaments Is Limited by Its Mechanical Properties.
    Martiel JL; Michelot A; Boujemaa-Paterski R; Blanchoin L; Berro J
    Biophys J; 2020 Jan; 118(1):182-192. PubMed ID: 31791547
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Discriminating dengue-infected hepatic cells (WRL-68) using dielectrophoresis.
    Yafouz B; Kadri NA; Rothan HA; Yusof R; Ibrahim F
    Electrophoresis; 2016 Feb; 37(3):511-8. PubMed ID: 26530354
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cell properties assessment using optimized dielectrophoresis-based cell stretching and lumped mechanical modeling.
    Hosseini II; Moghimi Zand M; Ebadi AA; Fathipour M
    Sci Rep; 2021 Jan; 11(1):2341. PubMed ID: 33504827
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A combined dielectrophoresis, traveling wave dielectrophoresis and electrorotation microchip for the manipulation and characterization of human malignant cells.
    Cen EG; Dalton C; Li Y; Adamia S; Pilarski LM; Kaler KV
    J Microbiol Methods; 2004 Sep; 58(3):387-401. PubMed ID: 15279943
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dual frequency dielectrophoresis with interdigitated sidewall electrodes for microfluidic flow-through separation of beads and cells.
    Wang L; Lu J; Marchenko SA; Monuki ES; Flanagan LA; Lee AP
    Electrophoresis; 2009 Mar; 30(5):782-91. PubMed ID: 19197906
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.