These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

256 related articles for article (PubMed ID: 28376803)

  • 21. Dielectrophoresis: applications and future outlook in point of care.
    Demircan Y; Özgür E; Külah H
    Electrophoresis; 2013 Apr; 34(7):1008-27. PubMed ID: 23348714
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Multiscale impact of nucleotides and cations on the conformational equilibrium, elasticity and rheology of actin filaments and crosslinked networks.
    Bidone TC; Kim T; Deriu MA; Morbiducci U; Kamm RD
    Biomech Model Mechanobiol; 2015 Oct; 14(5):1143-55. PubMed ID: 25708806
    [TBL] [Abstract][Full Text] [Related]  

  • 23. How should the optical tweezers experiment be used to characterize the red blood cell membrane mechanics?
    Sigüenza J; Mendez S; Nicoud F
    Biomech Model Mechanobiol; 2017 Oct; 16(5):1645-1657. PubMed ID: 28470421
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Advances in the mechanical modeling of filamentous actin and its cross-linked networks on multiple scales.
    Unterberger MJ; Holzapfel GA
    Biomech Model Mechanobiol; 2014 Nov; 13(6):1155-74. PubMed ID: 24700235
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Monitoring the permeabilization of a single cell in a microfluidic device, through the estimation of its dielectric properties based on combined dielectrophoresis and electrorotation in situ experiments.
    Trainito CI; Français O; Le Pioufle B
    Electrophoresis; 2015 May; 36(9-10):1115-22. PubMed ID: 25641658
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Noninvasive detection of changes in cells' cytosol conductivity by combining dielectrophoresis with optical tweezers.
    Moisescu MG; Savopol T; Dimitriu L; Cemazar J; Kovacs E; Radu M
    Anal Chim Acta; 2018 Nov; 1030():166-171. PubMed ID: 30032766
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Experimental and computational investigation of the role of stress fiber contractility in the resistance of osteoblasts to compression.
    Weafer PP; Ronan W; Jarvis SP; McGarry JP
    Bull Math Biol; 2013 Aug; 75(8):1284-303. PubMed ID: 23354930
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Live-cell subcellular measurement of cell stiffness using a microengineered stretchable micropost array membrane.
    Lam RH; Weng S; Lu W; Fu J
    Integr Biol (Camb); 2012 Oct; 4(10):1289-98. PubMed ID: 22935822
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Isolation of Langerhans islets by dielectrophoresis.
    Burgarella S; Merlo S; Figliuzzi M; Remuzzi A
    Electrophoresis; 2013 Apr; 34(7):1068-75. PubMed ID: 23161152
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Force transduction and strain dynamics in actin stress fibres in response to nanonewton forces.
    Guolla L; Bertrand M; Haase K; Pelling AE
    J Cell Sci; 2012 Feb; 125(Pt 3):603-13. PubMed ID: 22389400
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Geometric and material determinants of patterning efficiency by dielectrophoresis.
    Albrecht DR; Sah RL; Bhatia SN
    Biophys J; 2004 Oct; 87(4):2131-47. PubMed ID: 15454417
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Cellular dielectrophoresis: applications to the characterization, manipulation, separation and patterning of cells.
    Gagnon ZR
    Electrophoresis; 2011 Sep; 32(18):2466-87. PubMed ID: 21922493
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Mechanics of actin filaments in cancer onset and progress.
    Tafazzoli-Shadpour M; Mohammadi E; Torkashvand E
    Int Rev Cell Mol Biol; 2020; 355():205-243. PubMed ID: 32859371
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Connections between single-cell biomechanics and human disease states: gastrointestinal cancer and malaria.
    Suresh S; Spatz J; Mills JP; Micoulet A; Dao M; Lim CT; Beil M; Seufferlein T
    Acta Biomater; 2005 Jan; 1(1):15-30. PubMed ID: 16701777
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A Shearing-Stretching Device That Can Apply Physiological Fluid Shear Stress and Cyclic Stretch Concurrently to Endothelial Cells.
    Meza D; Abejar L; Rubenstein DA; Yin W
    J Biomech Eng; 2016 Mar; 138(3):4032550. PubMed ID: 26810848
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Dielectrophoresis for manipulation of micro/nano particles in microfluidic systems.
    Zhang C; Khoshmanesh K; Mitchell A; Kalantar-Zadeh K
    Anal Bioanal Chem; 2010 Jan; 396(1):401-20. PubMed ID: 19578834
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Two-dimensional numerical modeling for separation of deformable cells using dielectrophoresis.
    Ye T; Li H; Lam KY
    Electrophoresis; 2015 Feb; 36(3):378-85. PubMed ID: 24981085
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Cytoskeletal Anisotropy Controls Geometry and Forces of Adherent Cells.
    Pomp W; Schakenraad K; Balcıoğlu HE; van Hoorn H; Danen EHJ; Merks RMH; Schmidt T; Giomi L
    Phys Rev Lett; 2018 Oct; 121(17):178101. PubMed ID: 30411958
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Experimental study of dielectrophoresis and liquid dielectrophoresis mechanisms for particle capture in a droplet.
    Tsai SL; Hong JL; Chen MK; Jang LS
    Electrophoresis; 2011 Jun; 32(11):1337-47. PubMed ID: 21538398
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Dielectrophoretic tweezers as a platform for molecular force spectroscopy in a highly parallel format.
    Cheng P; Barrett MJ; Oliver PM; Cetin D; Vezenov D
    Lab Chip; 2011 Dec; 11(24):4248-59. PubMed ID: 22051576
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.