BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

55 related articles for article (PubMed ID: 28377237)

  • 1. Synthesis of conformation switchable cationic polypeptides based on poly(S-propargyl-cysteine) for use as siRNA delivery.
    Yi L; Wang Y; Lin G; Lin D; Chen W; Huang Y; Ye G
    Int J Biol Macromol; 2017 Aug; 101():758-767. PubMed ID: 28377237
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Modulating Polymer-siRNA Binding Does Not Promote Polyplex-Mediated Silencing.
    Splichal RC; Gredell JA; Vogel EB; Malefyt A; Comiskey G; Smith MR; Chan C; Walton SP
    Nucleic Acid Ther; 2021 Jun; 31(3):229-236. PubMed ID: 32749923
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Optimal Hydrophobicity in Ring-Opening Metathesis Polymerization-Based Protein Mimics Required for siRNA Internalization.
    deRonde BM; Posey ND; Otter R; Caffrey LM; Minter LM; Tew GN
    Biomacromolecules; 2016 Jun; 17(6):1969-77. PubMed ID: 27103189
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Design and Synthesis of Piperazine-Based Compounds Conjugated to Humanized Ferritin as Delivery System of siRNA in Cancer Cells.
    Pediconi N; Ghirga F; Del Plato C; Peruzzi G; Athanassopoulos CM; Mori M; Crestoni ME; Corinti D; Ugozzoli F; Massera C; Arcovito A; Botta B; Boffi A; Quaglio D; Baiocco P
    Bioconjug Chem; 2021 Jun; 32(6):1105-1116. PubMed ID: 33978420
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Triblock copolymer-encapsulated nanoparticles with outstanding colloidal stability for siRNA delivery.
    Qian J; Gao X
    ACS Appl Mater Interfaces; 2013 Apr; 5(8):2845-52. PubMed ID: 23320382
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cationic amino-acid functionalized polymethacrylamide vectors for siRNA transfection based on modification of poly(2-isopropenyl-2-oxazoline).
    Jerca FA; Muntean C; Remaut K; Jerca VV; Raemdonck K; Hoogenboom R
    J Control Release; 2023 Dec; 364():687-699. PubMed ID: 37935258
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Amylose-Based Cationic Star Polymers for siRNA Delivery.
    Nishimura T; Umezaki K; Mukai SA; Sawada S; Akiyoshi K
    Biomed Res Int; 2015; 2015():962941. PubMed ID: 26539548
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Synthesis of controlled, high-molecular weight poly(l-glutamic acid) brush polymers.
    Baumgartner R; Kuai D; Cheng J
    Biomater Sci; 2017 Aug; 5(9):1836-1844. PubMed ID: 28664205
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Self-Assembled Cationic Polypeptide Supramolecular Nanogels for Intracellular DNA Delivery.
    Pottanam Chali S; Hüwel S; Rentmeister A; Ravoo BJ
    Chemistry; 2021 Aug; 27(47):12198-12206. PubMed ID: 34125454
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Melittin derived peptides for nanoparticle based siRNA transfection.
    Hou KK; Pan H; Lanza GM; Wickline SA
    Biomaterials; 2013 Apr; 34(12):3110-9. PubMed ID: 23380356
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Water-soluble poly(L-serine)s with elongated and charged side-chains: synthesis, conformations, and cell-penetrating properties.
    Tang H; Yin L; Lu H; Cheng J
    Biomacromolecules; 2012 Sep; 13(9):2609-15. PubMed ID: 22853191
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Chiral cationic polyamines for chiral microcapsules and siRNA delivery.
    Gharavi J; Marks P; Moran K; Kingsborough B; Verma R; Chen Y; Deng R; Levine M
    Bioorg Med Chem Lett; 2013 Nov; 23(21):5919-22. PubMed ID: 24035095
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mapping Optimal Charge Density and Length of ROMP-Based PTDMs for siRNA Internalization.
    Caffrey LM; deRonde BM; Minter LM; Tew GN
    Biomacromolecules; 2016 Oct; 17(10):3205-3212. PubMed ID: 27599388
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Helix
    Oelker AM; Morey SM; Griffith LG; Hammond PT
    Soft Matter; 2012 Nov; 42(8):10887-10895. PubMed ID: 24575148
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Self-assemble nanoparticles based on polypeptides containing C-terminal luminescent Pt-cysteine complex.
    Vlakh EG; Grachova EV; Zhukovsky DD; Hubina AV; Mikhailova AS; Shakirova JR; Sharoyko VV; Tunik SP; Tennikova TB
    Sci Rep; 2017 Feb; 7():41991. PubMed ID: 28155880
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Chirality-selected phase behaviour in ionic polypeptide complexes.
    Perry SL; Leon L; Hoffmann KQ; Kade MJ; Priftis D; Black KA; Wong D; Klein RA; Pierce CF; Margossian KO; Whitmer JK; Qin J; de Pablo JJ; Tirrell M
    Nat Commun; 2015 Jan; 6():6052. PubMed ID: 25586861
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Chirality-Regulated Clusteroluminescence in Polypeptides.
    Zhao W; Gao M; Kong L; Yu S; Zhao C; Chen C
    Biomacromolecules; 2024 Mar; 25(3):1897-1905. PubMed ID: 38330502
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Switchable Coacervate Formation via Amino Acid Functionalization of Poly(dehydroalanine).
    Morrison CA; Chan EP; Lee T; Deming TJ
    Biomacromolecules; 2024 Apr; 25(4):2554-2562. PubMed ID: 38426942
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Accelerated Mechanochemistry in Helical Polymers.
    Zhang H; Diesendruck CE
    Angew Chem Int Ed Engl; 2022 Mar; 61(14):e202115325. PubMed ID: 35075760
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of chain lengths and backbone chirality on the bone-targeting ability of poly(glutamic acid)s.
    Xia J; Wang W; Jin X; Zhao J; Chen J; Li N; Xiao S; Lin D; Song Z
    Biomater Sci; 2024 Jun; ():. PubMed ID: 38913349
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 3.