These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Transcorneal alternating current stimulation after severe axon damage in rats results in "long-term silent survivor" neurons. Henrich-Noack P; Lazik S; Sergeeva E; Wagner S; Voigt N; Prilloff S; Fedorov A; Sabel BA Brain Res Bull; 2013 Jun; 95():7-14. PubMed ID: 23500179 [TBL] [Abstract][Full Text] [Related]
3. Transcorneal electrical stimulation alters morphology and survival of retinal ganglion cells after optic nerve damage. Henrich-Noack P; Voigt N; Prilloff S; Fedorov A; Sabel BA Neurosci Lett; 2013 May; 543():1-6. PubMed ID: 23523651 [TBL] [Abstract][Full Text] [Related]
4. Alternating Current Stimulation for Vision Restoration after Optic Nerve Damage: A Randomized Clinical Trial. Gall C; Schmidt S; Schittkowski MP; Antal A; Ambrus GG; Paulus W; Dannhauer M; Michalik R; Mante A; Bola M; Lux A; Kropf S; Brandt SA; Sabel BA PLoS One; 2016; 11(6):e0156134. PubMed ID: 27355577 [TBL] [Abstract][Full Text] [Related]
5. Neuroprotective effect of transcorneal electrical stimulation on the acute phase of optic nerve injury. Miyake K; Yoshida M; Inoue Y; Hata Y Invest Ophthalmol Vis Sci; 2007 May; 48(5):2356-61. PubMed ID: 17460302 [TBL] [Abstract][Full Text] [Related]
6. Sphingosine 1-phosphate receptor 1 is required for retinal ganglion cell survival after optic nerve trauma. Joly S; Pernet V J Neurochem; 2016 Aug; 138(4):571-86. PubMed ID: 27309795 [TBL] [Abstract][Full Text] [Related]
7. Changes of retinal glutamate transporter GLT-1 mRNA levels following optic nerve damage. Mawrin C; Pap T; Pallas M; Dietzmann K; Behrens-Baumann W; Vorwerk CK Mol Vis; 2003 Jan; 9():10-3. PubMed ID: 12533722 [TBL] [Abstract][Full Text] [Related]
8. Restoration of vision IV: role of compensatory soma swelling of surviving retinal ganglion cells in recovery of vision after optic nerve crush. Rousseau V; Sabel BA Restor Neurol Neurosci; 2001; 18(4):177-89. PubMed ID: 11847441 [TBL] [Abstract][Full Text] [Related]
9. Distribution of mesenchymal stem cells and effects on neuronal survival and axon regeneration after optic nerve crush and cell therapy. Mesentier-Louro LA; Zaverucha-do-Valle C; da Silva-Junior AJ; Nascimento-Dos-Santos G; Gubert F; de Figueirêdo AB; Torres AL; Paredes BD; Teixeira C; Tovar-Moll F; Mendez-Otero R; Santiago MF PLoS One; 2014; 9(10):e110722. PubMed ID: 25347773 [TBL] [Abstract][Full Text] [Related]
10. Low intensity repetitive transcranial magnetic stimulation does not induce cell survival or regeneration in a mouse optic nerve crush model. Tang AD; Makowiecki K; Bartlett C; Rodger J PLoS One; 2015; 10(5):e0126949. PubMed ID: 25993112 [TBL] [Abstract][Full Text] [Related]
11. Repetitive transorbital alternating current stimulation in optic neuropathy. Gall C; Fedorov AB; Ernst L; Borrmann A; Sabel BA NeuroRehabilitation; 2010; 27(4):335-41. PubMed ID: 21160123 [TBL] [Abstract][Full Text] [Related]
12. Two faces of calcium activation after optic nerve trauma: life or death of retinal ganglion cells in vivo depends on calcium dynamics. Prilloff S; Noblejas MI; Chedhomme V; Sabel BA Eur J Neurosci; 2007 Jun; 25(11):3339-46. PubMed ID: 17553002 [TBL] [Abstract][Full Text] [Related]
13. Noninvasive transorbital alternating current stimulation improves subjective visual functioning and vision-related quality of life in optic neuropathy. Gall C; Sgorzaly S; Schmidt S; Brandt S; Fedorov A; Sabel BA Brain Stimul; 2011 Oct; 4(4):175-88. PubMed ID: 21981853 [TBL] [Abstract][Full Text] [Related]
14. Repetitive Transcorneal Alternating Current Stimulation Reduces Brain Idling State After Long-term Vision Loss. Sergeeva EG; Bola M; Wagner S; Lazik S; Voigt N; Mawrin C; Gorkin AG; Waleszczyk WJ; Sabel BA; Henrich-Noack P Brain Stimul; 2015; 8(6):1065-73. PubMed ID: 26145756 [TBL] [Abstract][Full Text] [Related]
15. Neuroprotective effects of Epigallocatechin-3-gallate (EGCG) in optic nerve crush model in rats. Xie J; Jiang L; Zhang T; Jin Y; Yang D; Chen F Neurosci Lett; 2010 Jul; 479(1):26-30. PubMed ID: 20471452 [TBL] [Abstract][Full Text] [Related]
16. Optic Nerve Regeneration After Crush Remodels the Injury Site: Molecular Insights From Imaging Mass Spectrometry. Stark DT; Anderson DMG; Kwong JMK; Patterson NH; Schey KL; Caprioli RM; Caprioli J Invest Ophthalmol Vis Sci; 2018 Jan; 59(1):212-222. PubMed ID: 29340649 [TBL] [Abstract][Full Text] [Related]
17. Recovery of axonal transport after partial optic nerve damage is associated with secondary retinal ganglion cell death in vivo. Prilloff S; Henrich-Noack P; Sabel BA Invest Ophthalmol Vis Sci; 2012 Mar; 53(3):1460-6. PubMed ID: 22297499 [TBL] [Abstract][Full Text] [Related]
18. Increased production of omega-3 fatty acids protects retinal ganglion cells after optic nerve injury in mice. Peng S; Shi Z; Su H; So KF; Cui Q Exp Eye Res; 2016 Jul; 148():90-96. PubMed ID: 27264241 [TBL] [Abstract][Full Text] [Related]
19. Neuroprotective effect of 4-(Phenylsulfanyl)butan-2-one on optic nerve crush model in rats. Chien JY; Sheu JH; Wen ZH; Tsai RK; Huang SP Exp Eye Res; 2016 Feb; 143():148-57. PubMed ID: 26472213 [TBL] [Abstract][Full Text] [Related]
20. Progressive enhancement of alpha activity and visual function in patients with optic neuropathy: a two-week repeated session alternating current stimulation study. Schmidt S; Mante A; Rönnefarth M; Fleischmann R; Gall C; Brandt SA Brain Stimul; 2013 Jan; 6(1):87-93. PubMed ID: 22537864 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]