BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

201 related articles for article (PubMed ID: 28377625)

  • 1. Revealing the structure and distribution changes of Eucalyptus lignin during the hydrothermal and alkaline pretreatments.
    Wang C; Li H; Li M; Bian J; Sun R
    Sci Rep; 2017 Apr; 7(1):593. PubMed ID: 28377625
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structural variation of eucalyptus lignin in a combination of hydrothermal and alkali treatments.
    Sun SN; Li HY; Cao XF; Xu F; Sun RC
    Bioresour Technol; 2015 Jan; 176():296-9. PubMed ID: 25435069
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structure and distribution changes of Eucalyptus hemicelluloses during hydrothermal and alkaline pretreatments.
    Wang C; Yang J; Wen J; Bian J; Li M; Peng F; Sun R
    Int J Biol Macromol; 2019 Jul; 133():514-521. PubMed ID: 31004633
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structural elucidation of Eucalyptus lignin and its dynamic changes in the cell walls during an integrated process of ionic liquids and successive alkali treatments.
    Li HY; Wang CZ; Chen X; Cao XF; Sun SN; Sun RC
    Bioresour Technol; 2016 Dec; 222():175-181. PubMed ID: 27718400
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of aluminum chloride-catalyzed hydrothermal pretreatment on the structural characteristics of lignin and enzymatic hydrolysis.
    Shen XJ; Wang B; Huang PL; Wen JL; Sun RC
    Bioresour Technol; 2016 Apr; 206():57-64. PubMed ID: 26845220
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structural Features of Alkaline Dioxane Lignin and Residual Lignin from Eucalyptus grandis × E. urophylla.
    Chen WJ; Zhao BC; Cao XF; Yuan TQ; Shi Q; Wang SF; Sun RC
    J Agric Food Chem; 2019 Jan; 67(3):968-974. PubMed ID: 30580517
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Integrated hot-compressed water and laccase-mediator treatments of Eucalyptus grandis fibers: structural changes of fiber and lignin.
    Wu JQ; Wen JL; Yuan TQ; Sun RC
    J Agric Food Chem; 2015 Feb; 63(6):1763-72. PubMed ID: 25639522
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of hydrothermal pretreatment on the structural changes of alkaline ethanol lignin from wheat straw.
    Chen X; Li H; Sun S; Cao X; Sun R
    Sci Rep; 2016 Dec; 6():39354. PubMed ID: 27982101
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of alkaline preswelling on the structure of lignins from Eucalyptus.
    Chen WJ; Yang S; Zhang Y; Wang YY; Yuan TQ; Sun RC
    Sci Rep; 2017 May; 7():45752. PubMed ID: 28462935
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structural characterization of residual hemicelluloses from hydrothermal pretreated Eucalyptus fiber.
    Sun SN; Cao XF; Li HY; Xu F; Sun RC
    Int J Biol Macromol; 2014 Aug; 69():158-64. PubMed ID: 24867208
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Understanding changes in lignin of Panicum virgatum and Eucalyptus globulus as a function of ionic liquid pretreatment.
    Varanasi P; Singh P; Arora R; Adams PD; Auer M; Simmons BA; Singh S
    Bioresour Technol; 2012 Dec; 126():156-61. PubMed ID: 23073103
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Discrepancy of lignin dissolution from eucalyptus during formic acid fractionation.
    Li XY; Li MF
    Int J Biol Macromol; 2020 Dec; 164():4662-4670. PubMed ID: 32941904
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparison of organosolv and hydrotropic pretreatments of eucalyptus for enhancing enzymatic saccharification.
    Mou H; Wu S
    Bioresour Technol; 2016 Nov; 220():637-640. PubMed ID: 27590575
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structural elucidation of lignin polymers of Eucalyptus chips during organosolv pretreatment and extended delignification.
    Wen JL; Sun SL; Yuan TQ; Xu F; Sun RC
    J Agric Food Chem; 2013 Nov; 61(46):11067-75. PubMed ID: 24168231
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Impact mechanisms of supercritical CO
    Jiang Y; Feng Y; Lei B; Zhong H
    Int J Biol Macromol; 2020 Oct; 161():1506-1515. PubMed ID: 32771515
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterization of the Interunit Bonds of Lignin Oligomers Released by Acid-Catalyzed Selective Solvolysis of Cryptomeria japonica and Eucalyptus globulus Woods via Thioacidolysis and 2D-NMR.
    Saito K; Kaiho A; Sakai R; Nishimura H; Okada H; Watanabe T
    J Agric Food Chem; 2016 Dec; 64(48):9152-9160. PubMed ID: 27806566
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structural characterization of lignin in heartwood, sapwood, and bark of eucalyptus.
    Xiao MZ; Chen WJ; Hong S; Pang B; Cao XF; Wang YY; Yuan TQ; Sun RC
    Int J Biol Macromol; 2019 Oct; 138():519-527. PubMed ID: 31348970
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comprehensive study on the chemical structure of dioxane lignin from plantation Eucalyptus globulus wood.
    Evtuguin DV; Neto CP; Silva AM; Domingues PM; Amado FM; Robert D; Faix O
    J Agric Food Chem; 2001 Sep; 49(9):4252-61. PubMed ID: 11559119
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structural characterization of poplar lignin based on the microwave-assisted hydrothermal pretreatment.
    Sun SF; Yang HY; Yang J; Shi ZJ
    Int J Biol Macromol; 2021 Nov; 190():360-367. PubMed ID: 34499950
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Unveiling the Dissolution Regularities of the Lignin-Carbohydrate Complex in Bamboo Cell Walls during Alkali Pretreatment.
    Wang X; Pu J; Liu Y; Qin C; Yao S; Wang S; Liang C
    J Agric Food Chem; 2024 May; 72(18):10206-10217. PubMed ID: 38597965
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.