These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 28377700)

  • 41. Pre-saccadic remapping relies on dynamics of spatial attention.
    Szinte M; Jonikaitis D; Rangelov D; Deubel H
    Elife; 2018 Dec; 7():. PubMed ID: 30596475
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Motor intention activity in the macaque's lateral intraparietal area. I. Dissociation of motor plan from sensory memory.
    Mazzoni P; Bracewell RM; Barash S; Andersen RA
    J Neurophysiol; 1996 Sep; 76(3):1439-56. PubMed ID: 8890265
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Impaired filtering of distracter stimuli by TE neurons following V4 and TEO lesions in macaques.
    Buffalo EA; Bertini G; Ungerleider LG; Desimone R
    Cereb Cortex; 2005 Feb; 15(2):141-51. PubMed ID: 15269106
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Coherent alpha oscillations link current and future receptive fields during saccades.
    Neupane S; Guitton D; Pack CC
    Proc Natl Acad Sci U S A; 2017 Jul; 114(29):E5979-E5985. PubMed ID: 28673993
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Effects of rearing kittens with convergent strabismus on development of receptive-field properties in striate cortex neurons.
    Chino YM; Shansky MS; Jankowski WL; Banser FA
    J Neurophysiol; 1983 Jul; 50(1):265-86. PubMed ID: 6875648
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Dynamic shifts of visual receptive fields in cortical area MT by spatial attention.
    Womelsdorf T; Anton-Erxleben K; Pieper F; Treue S
    Nat Neurosci; 2006 Sep; 9(9):1156-60. PubMed ID: 16906153
    [TBL] [Abstract][Full Text] [Related]  

  • 47. No Evidence for Automatic Remapping of Stimulus Features or Location Found with fMRI.
    Lescroart MD; Kanwisher N; Golomb JD
    Front Syst Neurosci; 2016; 10():53. PubMed ID: 27378866
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Neurons in the supplementary eye field of rhesus monkeys code visual targets and saccadic eye movements in an oculocentric coordinate system.
    Russo GS; Bruce CJ
    J Neurophysiol; 1996 Aug; 76(2):825-48. PubMed ID: 8871203
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Tuning curves vs. population responses, and perceptual consequences of receptive-field remapping.
    Qian N; Goldberg ME; Zhang M
    Front Comput Neurosci; 2022; 16():1060757. PubMed ID: 36714528
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Electrophysiological correlates of presaccadic remapping in humans.
    Parks NA; Corballis PM
    Psychophysiology; 2008 Sep; 45(5):776-83. PubMed ID: 18513363
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Receptive fields of visual neurons: the early years.
    Spillmann L
    Perception; 2014; 43(11):1145-76. PubMed ID: 25638933
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Alterations in visual receptive fields in the superior colliculus induced by amphetamine.
    Grasse KL; Douglas RM; Mendelson JR
    Exp Brain Res; 1993; 92(3):453-66. PubMed ID: 8454009
    [TBL] [Abstract][Full Text] [Related]  

  • 53. The time course of perisaccadic receptive field shifts in the lateral intraparietal area of the monkey.
    Kusunoki M; Goldberg ME
    J Neurophysiol; 2003 Mar; 89(3):1519-27. PubMed ID: 12612015
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Automatic mapping of visual cortex receptive fields: a fast and precise algorithm.
    Fiorani M; Azzi JC; Soares JG; Gattass R
    J Neurosci Methods; 2014 Jan; 221():112-26. PubMed ID: 24084390
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Spatiotopic Adaptation in Visual Areas.
    Zimmermann E; Weidner R; Abdollahi RO; Fink GR
    J Neurosci; 2016 Sep; 36(37):9526-34. PubMed ID: 27629705
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Circuits for presaccadic visual remapping.
    Rao HM; Mayo JP; Sommer MA
    J Neurophysiol; 2016 Dec; 116(6):2624-2636. PubMed ID: 27655962
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Receptive field (RF) properties of the macaque second somatosensory cortex: RF size, shape, and somatotopic organization.
    Fitzgerald PJ; Lane JW; Thakur PH; Hsiao SS
    J Neurosci; 2006 Jun; 26(24):6485-95. PubMed ID: 16775136
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Relationship between the Dynamics of Orientation Tuning and Spatiotemporal Receptive Field Structures of Cat LGN Neurons.
    Li H; Fang Q; Ge Y; Li Z; Meng J; Zhu J; Yu H
    Neuroscience; 2018 May; 377():26-39. PubMed ID: 29481999
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Measuring V1 receptive fields despite eye movements in awake monkeys.
    Read JC; Cumming BG
    J Neurophysiol; 2003 Aug; 90(2):946-60. PubMed ID: 12711706
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Use of an extraretinal signal by monkey superior colliculus neurons to distinguish real from self-induced stimulus movement.
    Robinson DL; Wurtz RH
    J Neurophysiol; 1976 Jul; 39(4):852-70. PubMed ID: 823306
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.