These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
248 related articles for article (PubMed ID: 28377784)
1. Flowering and Growth Responses of Cultivated Lentil and Wild Yuan HY; Saha S; Vandenberg A; Bett KE Front Plant Sci; 2017; 8():386. PubMed ID: 28377784 [TBL] [Abstract][Full Text] [Related]
2. RNA-Seq and Gene Ontology Analysis Reveal Differences Associated With Low R/FR-Induced Shade Responses in Cultivated Lentil and a Wild Relative. Yuan HY; Caron CT; Vandenberg A; Bett KE Front Genet; 2022; 13():891702. PubMed ID: 35795209 [TBL] [Abstract][Full Text] [Related]
3. Uncoupling light quality from light irradiance effects in Helianthus annuus shoots: putative roles for plant hormones in leaf and internode growth. Kurepin LV; Emery RJ; Pharis RP; Reid DM J Exp Bot; 2007; 58(8):2145-57. PubMed ID: 17490995 [TBL] [Abstract][Full Text] [Related]
4. Characterization of Genetic and Allelic Diversity Amongst Cultivated and Wild Lentil Accessions for Germplasm Enhancement. Dissanayake R; Braich S; Cogan NOI; Smith K; Kaur S Front Genet; 2020; 11():546. PubMed ID: 32587602 [TBL] [Abstract][Full Text] [Related]
5. Disentangling the effects of photosynthetically active radiation and red to far-red ratio on plant photosynthesis under canopy shading: a simulation study using a functional-structural plant model. Zhang N; van Westreenen A; Anten NPR; Evers JB; Marcelis LFM Ann Bot; 2020 Sep; 126(4):635-646. PubMed ID: 31793625 [TBL] [Abstract][Full Text] [Related]
6. Genetic and gene expression analysis of flowering time regulation by light quality in lentil. Yuan HY; Caron CT; Ramsay L; Fratini R; de la Vega MP; Vandenberg A; Weller JL; Bett KE Ann Bot; 2021 Sep; 128(4):481-496. PubMed ID: 34185828 [TBL] [Abstract][Full Text] [Related]
7. Adding Far-Red to Red-Blue Light-Emitting Diode Light Promotes Yield of Lettuce at Different Planting Densities. Jin W; Urbina JL; Heuvelink E; Marcelis LFM Front Plant Sci; 2020; 11():609977. PubMed ID: 33519862 [TBL] [Abstract][Full Text] [Related]
8. Morphological and Pigment Responses to Far-Red and Photosynthetically Active Radiation in an Olive Cultivar Suitable for Super-High-Density Orchards. Ladux FJ; González CV; Trentacoste ER; Searles PS; Rousseaux MC Plants (Basel); 2024 Jul; 13(13):. PubMed ID: 38999661 [TBL] [Abstract][Full Text] [Related]
9. Limited-transpiration trait in response to high vapor pressure deficit from wild to cultivated species: study of the Lens genus. Rouichi S; Idrissi O; Sohail Q; Marrou H; Sinclair TR; Hejjaoui K; Amri M; Ghanem ME J Exp Bot; 2023 Sep; 74(16):4875-4887. PubMed ID: 37422910 [TBL] [Abstract][Full Text] [Related]
10. Light signaling and the phytohormonal regulation of shoot growth. Kurepin LV; Pharis RP Plant Sci; 2014 Dec; 229():280-289. PubMed ID: 25443853 [TBL] [Abstract][Full Text] [Related]
11. Evaluation of Wild Lentil Species as Genetic Resources to Improve Drought Tolerance in Cultivated Lentil. Gorim LY; Vandenberg A Front Plant Sci; 2017; 8():1129. PubMed ID: 28706524 [TBL] [Abstract][Full Text] [Related]
12. Physiological responses of spring rapeseed (Brassica napus) to red/far-red ratios and irradiance during pre- and post-flowering stages. Rondanini DP; del Pilar Vilariño M; Roberts ME; Polosa MA; Botto JF Physiol Plant; 2014 Dec; 152(4):784-94. PubMed ID: 24814241 [TBL] [Abstract][Full Text] [Related]
13. Classification and characterization of species within the genus lens using genotyping-by-sequencing (GBS). Wong MM; Gujaria-Verma N; Ramsay L; Yuan HY; Caron C; Diapari M; Vandenberg A; Bett KE PLoS One; 2015; 10(3):e0122025. PubMed ID: 25815480 [TBL] [Abstract][Full Text] [Related]
14. Effects of Continuous or End-of-Day Far-Red Light on Tomato Plant Growth, Morphology, Light Absorption, and Fruit Production. Kalaitzoglou P; van Ieperen W; Harbinson J; van der Meer M; Martinakos S; Weerheim K; Nicole CCS; Marcelis LFM Front Plant Sci; 2019; 10():322. PubMed ID: 30984211 [TBL] [Abstract][Full Text] [Related]
15. Paradise by the far-red light: Far-red and red:blue ratios independently affect yield, pigments, and carbohydrate production in lettuce, Van Brenk JB; Courbier S; Kleijweg CL; Verdonk JC; Marcelis LFM Front Plant Sci; 2024; 15():1383100. PubMed ID: 38745919 [TBL] [Abstract][Full Text] [Related]
16. The interaction of light quality and irradiance with gibberellins, cytokinins and auxin in regulating growth of Helianthus annuus hypocotyls. Kurepin LV; Emery RJ; Pharis RP; Reid DM Plant Cell Environ; 2007 Feb; 30(2):147-55. PubMed ID: 17238906 [TBL] [Abstract][Full Text] [Related]
17. Phytochrome B and at Least One Other Phytochrome Mediate the Accelerated Flowering Response of Arabidopsis thaliana L. to Low Red/Far-Red Ratio. Halliday KJ; Koornneef M; Whitelam GC Plant Physiol; 1994 Apr; 104(4):1311-1315. PubMed ID: 12232170 [TBL] [Abstract][Full Text] [Related]
18. Diversity in Surface Microstructures of Trichomes, Epidermal Cells, and Stomata in Lentil Germplasm. Patel I; Gorim LY; Tanino K; Vandenberg A Front Plant Sci; 2021; 12():697692. PubMed ID: 34322146 [TBL] [Abstract][Full Text] [Related]
20. Effect of extending the photoperiod with low-intensity red or far-red light on the timing of shoot elongation and flower-bud formation of 1-year-old Japanese pear (Pyrus pyrifolia). Ito A; Saito T; Nishijima T; Moriguchi T Tree Physiol; 2014 May; 34(5):534-46. PubMed ID: 24876291 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]