BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

605 related articles for article (PubMed ID: 28377903)

  • 1. The Bioinformatics Analysis of Comparative Genomics of
    Jia X; Yang L; Dong M; Chen S; Lv L; Cao D; Fu J; Yang T; Zhang J; Zhang X; Shang Y; Wang G; Sheng Y; Huang H; Chen F
    Front Cell Infect Microbiol; 2017; 7():88. PubMed ID: 28377903
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparative Genomics of Field Isolates of Mycobacterium bovis and M. caprae Provides Evidence for Possible Correlates with Bacterial Viability and Virulence.
    de la Fuente J; Díez-Delgado I; Contreras M; Vicente J; Cabezas-Cruz A; Tobes R; Manrique M; López V; Romero B; Bezos J; Dominguez L; Sevilla IA; Garrido JM; Juste R; Madico G; Jones-López E; Gortazar C
    PLoS Negl Trop Dis; 2015 Nov; 9(11):e0004232. PubMed ID: 26583774
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evolutionary landscape of the Mycobacterium tuberculosis complex from the viewpoint of PhoPR: implications for virulence regulation and application to vaccine development.
    Broset E; Martín C; Gonzalo-Asensio J
    mBio; 2015 Oct; 6(5):e01289-15. PubMed ID: 26489860
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biological and Epidemiological Consequences of MTBC Diversity.
    Coscolla M
    Adv Exp Med Biol; 2017; 1019():95-116. PubMed ID: 29116631
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Genome structure in the vole bacillus, Mycobacterium microti, a member of the Mycobacterium tuberculosis complex with a low virulence for humans.
    Frota CC; Hunt DM; Buxton RS; Rickman L; Hinds J; Kremer K; van Soolingen D; Colston MJ
    Microbiology (Reading); 2004 May; 150(Pt 5):1519-1527. PubMed ID: 15133113
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Pathogenomic analyses of
    Orgeur M; Frigui W; Pawlik A; Clark S; Williams A; Ates LS; Ma L; Bouchier C; Parkhill J; Brodin P; Brosch R
    Microb Genom; 2021 Feb; 7(2):. PubMed ID: 33529148
    [No Abstract]   [Full Text] [Related]  

  • 7. Comparative Genomics and Proteomic Analysis of Four Non-tuberculous Mycobacterium Species and Mycobacterium tuberculosis Complex: Occurrence of Shared Immunogenic Proteins.
    Gcebe N; Michel A; Gey van Pittius NC; Rutten V
    Front Microbiol; 2016; 7():795. PubMed ID: 27375559
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparative Whole-Genomic Analysis of an Ancient L2 Lineage
    Rajwani R; Yam WC; Zhang Y; Kang Y; Wong BKC; Leung KSS; Tam KKG; Tulu KT; Zhu L; Siu GKH
    Front Cell Infect Microbiol; 2017; 7():539. PubMed ID: 29376038
    [No Abstract]   [Full Text] [Related]  

  • 9. Diversification of gene content in the
    Silva-Pereira TT; Soler-Camargo NC; Guimarães AMS
    Microbiol Spectr; 2024 Feb; 12(2):e0228923. PubMed ID: 38230932
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Clade-specific virulence patterns of Mycobacterium tuberculosis complex strains in human primary macrophages and aerogenically infected mice.
    Reiling N; Homolka S; Walter K; Brandenburg J; Niwinski L; Ernst M; Herzmann C; Lange C; Diel R; Ehlers S; Niemann S
    mBio; 2013 Jul; 4(4):. PubMed ID: 23900170
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Independent genomic polymorphisms in the PknH serine threonine kinase locus during evolution of the Mycobacterium tuberculosis Complex affect virulence and host preference.
    Mata E; Farrell D; Ma R; Uranga S; Gomez AB; Monzon M; Badiola J; Anel A; Gonzalo-Asensio J; Martin C; Gordon SV; Aguilo N
    PLoS Pathog; 2020 Dec; 16(12):e1009061. PubMed ID: 33347499
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bacterial artificial chromosome-based comparative genomic analysis identifies Mycobacterium microti as a natural ESAT-6 deletion mutant.
    Brodin P; Eiglmeier K; Marmiesse M; Billault A; Garnier T; Niemann S; Cole ST; Brosch R
    Infect Immun; 2002 Oct; 70(10):5568-78. PubMed ID: 12228284
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparative 'omics analyses differentiate Mycobacterium tuberculosis and Mycobacterium bovis and reveal distinct macrophage responses to infection with the human and bovine tubercle bacilli.
    Malone KM; Rue-Albrecht K; Magee DA; Conlon K; Schubert OT; Nalpas NC; Browne JA; Smyth A; Gormley E; Aebersold R; MacHugh DE; Gordon SV
    Microb Genom; 2018 Mar; 4(3):. PubMed ID: 29557774
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Quantitative proteomics reveals that dormancy-related proteins mediate the attenuation in mycobacterium strains.
    Wang H; Wan L; Shi J; Zhang T; Zhu H; Jiang S; Meng S; Wu S; Sun J; Chang L; Zhang L; Wan K; Yang J; Zhao X; Liu H; Zhang Y; Dai E; Xu P
    Virulence; 2021 Dec; 12(1):2228-2246. PubMed ID: 34634997
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Unexpected Genomic and Phenotypic Diversity of Mycobacterium africanum Lineage 5 Affects Drug Resistance, Protein Secretion, and Immunogenicity.
    Ates LS; Dippenaar A; Sayes F; Pawlik A; Bouchier C; Ma L; Warren RM; Sougakoff W; Majlessi L; van Heijst JWJ; Brossier F; Brosch R
    Genome Biol Evol; 2018 Aug; 10(8):1858-1874. PubMed ID: 30010947
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Precision methylome characterization of Mycobacterium tuberculosis complex (MTBC) using PacBio single-molecule real-time (SMRT) technology.
    Zhu L; Zhong J; Jia X; Liu G; Kang Y; Dong M; Zhang X; Li Q; Yue L; Li C; Fu J; Xiao J; Yan J; Zhang B; Lei M; Chen S; Lv L; Zhu B; Huang H; Chen F
    Nucleic Acids Res; 2016 Jan; 44(2):730-43. PubMed ID: 26704977
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Polymorphisms in the PE35 and PPE68 antigens in Mycobacterium tuberculosis strains may affect strain virulence and reflect ongoing immune evasion.
    Jiang Y; Wei J; Liu H; Li G; Guo Q; Qiu Y; Zhao L; Li M; Zhao X; Dou X; Wan K
    Mol Med Rep; 2016 Jan; 13(1):947-54. PubMed ID: 26648016
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Genome sequencing of Mycobacterium pinnipedii strains: genetic characterization and evidence of superinfection in a South American sea lion (Otaria flavescens).
    Silva-Pereira TT; Ikuta CY; Zimpel CK; Camargo NCS; de Souza Filho AF; Ferreira Neto JS; Heinemann MB; Guimarães AMS
    BMC Genomics; 2019 Dec; 20(1):1030. PubMed ID: 31888476
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Learning from epidemiological, clinical, and immunological studies on Mycobacterium africanum for improving current understanding of host-pathogen interactions, and for the development and evaluation of diagnostics, host-directed therapies, and vaccines for tuberculosis.
    Zumla A; Otchere ID; Mensah GI; Asante-Poku A; Gehre F; Maeurer M; Bates M; Mwaba P; Ntoumi F; Yeboah-Manu D
    Int J Infect Dis; 2017 Mar; 56():126-129. PubMed ID: 27979782
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Impact of
    Camassa S; Palucci I; Iantomasi R; Cubeddu T; Minerva M; De Maio F; Jouny S; Petruccioli E; Goletti D; Ria F; Sali M; Sanguinetti M; Manganelli R; Rocca S; Brodin P; Delogu G
    Front Cell Infect Microbiol; 2017; 7():137. PubMed ID: 28484686
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 31.