These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 28378607)

  • 1. New Capabilities of EvoBot: A Modular, Open-Source Liquid-Handling Robot.
    Nejatimoharrami F; Faina A; Stoy K
    SLAS Technol; 2017 Oct; 22(5):500-506. PubMed ID: 28378607
    [TBL] [Abstract][Full Text] [Related]  

  • 2. PaR-PaR laboratory automation platform.
    Linshiz G; Stawski N; Poust S; Bi C; Keasling JD; Hillson NJ
    ACS Synth Biol; 2013 May; 2(5):216-22. PubMed ID: 23654257
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dynamically optimizing experiment schedules of a laboratory robot system with simulated annealing.
    Cabrera C; Fine-Morris M; Pokross M; Kish K; Michalczyk S; Cahn M; Klei H; Russo MF
    J Lab Autom; 2014 Dec; 19(6):517-27. PubMed ID: 25117530
    [TBL] [Abstract][Full Text] [Related]  

  • 4. PR-PR: cross-platform laboratory automation system.
    Linshiz G; Stawski N; Goyal G; Bi C; Poust S; Sharma M; Mutalik V; Keasling JD; Hillson NJ
    ACS Synth Biol; 2014 Aug; 3(8):515-24. PubMed ID: 25126893
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Establishment of low-cost laboratory automation processes using AutoIt and 4-axis robots.
    Rupp N; Peschke K; Köppl M; Drissner D; Zuchner T
    SLAS Technol; 2022 Oct; 27(5):312-318. PubMed ID: 35830957
    [TBL] [Abstract][Full Text] [Related]  

  • 6. MAPLE (modular automated platform for large-scale experiments), a robot for integrated organism-handling and phenotyping.
    Alisch T; Crall JD; Kao AB; Zucker D; de Bivort BL
    Elife; 2018 Aug; 7():. PubMed ID: 30117804
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Automated data collection for macromolecular crystallography.
    Winter G; McAuley KE
    Methods; 2011 Sep; 55(1):81-93. PubMed ID: 21763424
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Automated Planning Enables Complex Protocols on Liquid-Handling Robots.
    Whitehead E; Rudolf F; Kaltenbach HM; Stelling J
    ACS Synth Biol; 2018 Mar; 7(3):922-932. PubMed ID: 29486123
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Automated Analytical Measurement Processes Using a Dual-Arm Robotic System.
    Fleischer H; Joshi S; Roddelkopf T; Klos M; Thurow K
    SLAS Technol; 2019 Jun; 24(3):354-356. PubMed ID: 30816065
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Laboratory automation in a functional programming language.
    Runciman C; Clare A; Harkness R
    J Lab Autom; 2014 Dec; 19(6):569-76. PubMed ID: 25124157
    [TBL] [Abstract][Full Text] [Related]  

  • 11. DIY Automated Feeding and Motion Recording System for the Analysis of Fish Behavior.
    Pylatiuk C; Zhao H; Gursky E; Reischl M; Peravali R; Foulkes N; Loosli F
    SLAS Technol; 2019 Aug; 24(4):394-398. PubMed ID: 31013465
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A versatile and low-cost open source pipetting robot for automation of toxicological and ecotoxicological bioassays.
    Steffens S; Nüßer L; Seiler TB; Ruchter N; Schumann M; Döring R; Cofalla C; Ostfeld A; Salomons E; Schüttrumpf H; Hollert H; Brinkmann M
    PLoS One; 2017; 12(6):e0179636. PubMed ID: 28622373
    [TBL] [Abstract][Full Text] [Related]  

  • 13. DIY liquid handling robots for integrated STEM education and life science research.
    Li E; Lam AT; Fuhrmann T; Erikson L; Wirth M; Miller ML; Blikstein P; Riedel-Kruse IH
    PLoS One; 2022; 17(11):e0275688. PubMed ID: 36350791
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Development of a Platform to Enable Fully Automated Cross-Titration Experiments.
    Cassaday J; Finley M; Squadroni B; Jezequel-Sur S; Rauch A; Gajera B; Uebele V; Hermes J; Zuck P
    SLAS Technol; 2017 Apr; 22(2):195-205. PubMed ID: 27864339
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Liquid-handling Lego robots and experiments for STEM education and research.
    Gerber LC; Calasanz-Kaiser A; Hyman L; Voitiuk K; Patil U; Riedel-Kruse IH
    PLoS Biol; 2017 Mar; 15(3):e2001413. PubMed ID: 28323828
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Point-of-Care Test Equipment for Flexible Laboratory Automation.
    You WS; Park JJ; Jin SM; Ryew SM; Choi HR
    J Lab Autom; 2014 Aug; 19(4):403-12. PubMed ID: 24496480
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enabling high-throughput biology with flexible open-source automation.
    Chory EJ; Gretton DW; DeBenedictis EA; Esvelt KM
    Mol Syst Biol; 2021 Mar; 17(3):e9942. PubMed ID: 33764680
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Liquid-Handling Robot for Automated Attachment of Biomolecules to Microbeads.
    Enten A; Yang Y; Ye Z; Chu R; Van T; Rothschild B; Gonzalez F; Sulchek T
    J Lab Autom; 2016 Aug; 21(4):526-32. PubMed ID: 26311061
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cellular-level surgery using nano robots.
    Song B; Yang R; Xi N; Patterson KC; Qu C; Lai KW
    J Lab Autom; 2012 Dec; 17(6):425-34. PubMed ID: 23015517
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Rapid Prototyping Platform for Saccharomyces cerevisiae Using Computer-Aided Genetic Design Enabled by Parallel Software and Workcell Platform Development.
    Rajakumar PD; Gowers GF; Suckling L; Foster A; Ellis T; Kitney RI; McClymont DW; Freemont PS
    SLAS Technol; 2019 Jun; 24(3):291-297. PubMed ID: 30165777
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.