BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

61 related articles for article (PubMed ID: 28378911)

  • 1. Fast de novo discovery of low-energy protein loop conformations.
    Wong SWK; Liu JS; Kou SC
    Proteins; 2017 Aug; 85(8):1402-1412. PubMed ID: 28378911
    [TBL] [Abstract][Full Text] [Related]  

  • 2. LEAP: highly accurate prediction of protein loop conformations by integrating coarse-grained sampling and optimized energy scores with all-atom refinement of backbone and side chains.
    Liang S; Zhang C; Zhou Y
    J Comput Chem; 2014 Feb; 35(4):335-41. PubMed ID: 24327406
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sampling multiple scoring functions can improve protein loop structure prediction accuracy.
    Li Y; Rata I; Jakobsson E
    J Chem Inf Model; 2011 Jul; 51(7):1656-66. PubMed ID: 21702492
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ab Initio Prediction of 3-D Conformations for Protein Long Loops with High Accuracy and Applications to Antibody CDRH3 Modeling.
    Liang S; Zhang C; Zhu M
    J Chem Inf Model; 2023 Dec; 63(23):7568-7577. PubMed ID: 38018130
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Unbiased, scalable sampling of protein loop conformations from probabilistic priors.
    Zhang Y; Hauser K
    BMC Struct Biol; 2013; 13 Suppl 1(Suppl 1):S9. PubMed ID: 24565175
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Protein loop closure using orientational restraints from NMR data.
    Tripathy C; Zeng J; Zhou P; Donald BR
    Proteins; 2012 Feb; 80(2):433-53. PubMed ID: 22161780
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evaluating conformational free energies: the colony energy and its application to the problem of loop prediction.
    Xiang Z; Soto CS; Honig B
    Proc Natl Acad Sci U S A; 2002 May; 99(11):7432-7. PubMed ID: 12032300
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Development of a new physics-based internal coordinate mechanics force field and its application to protein loop modeling.
    Arnautova YA; Abagyan RA; Totrov M
    Proteins; 2011 Feb; 79(2):477-98. PubMed ID: 21069716
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Protein loop modeling by using fragment assembly and analytical loop closure.
    Lee J; Lee D; Park H; Coutsias EA; Seok C
    Proteins; 2010 Dec; 78(16):3428-36. PubMed ID: 20872556
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Iterative assembly of helical proteins by optimal hydrophobic packing.
    Wu GA; Coutsias EA; Dill KA
    Structure; 2008 Aug; 16(8):1257-66. PubMed ID: 18682227
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Constructing effective energy functions for protein structure prediction through broadening attraction-basin and reverse Monte Carlo sampling.
    Wang C; Wei Y; Zhang H; Kong L; Sun S; Zheng WM; Bu D
    BMC Bioinformatics; 2019 Mar; 20(Suppl 3):135. PubMed ID: 30925867
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Accurate and efficient loop selections by the DFIRE-based all-atom statistical potential.
    Zhang C; Liu S; Zhou Y
    Protein Sci; 2004 Feb; 13(2):391-9. PubMed ID: 14739324
    [TBL] [Abstract][Full Text] [Related]  

  • 13. BCL::Fold--de novo prediction of complex and large protein topologies by assembly of secondary structure elements.
    Karakaş M; Woetzel N; Staritzbichler R; Alexander N; Weiner BE; Meiler J
    PLoS One; 2012; 7(11):e49240. PubMed ID: 23173050
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Accurate positioning of functional residues with robotics-inspired computational protein design.
    Krivacic C; Kundert K; Pan X; Pache RA; Liu L; Conchúir SO; Jeliazkov JR; Gray JJ; Thompson MC; Fraser JS; Kortemme T
    Proc Natl Acad Sci U S A; 2022 Mar; 119(11):e2115480119. PubMed ID: 35254891
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Efficient sampling of protein conformational space using fast loop building and batch minimization on highly parallel computers.
    Tyka MD; Jung K; Baker D
    J Comput Chem; 2012 Dec; 33(31):2483-91. PubMed ID: 22847521
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Computing the relative stabilities and the per-residue components in protein conformational changes.
    Roy A; Perez A; Dill KA; Maccallum JL
    Structure; 2014 Jan; 22(1):168-75. PubMed ID: 24316402
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A generic program for multistate protein design.
    Leaver-Fay A; Jacak R; Stranges PB; Kuhlman B
    PLoS One; 2011; 6(7):e20937. PubMed ID: 21754981
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Computational design of closely related proteins that adopt two well-defined but structurally divergent folds.
    Wei KY; Moschidi D; Bick MJ; Nerli S; McShan AC; Carter LP; Huang PS; Fletcher DA; Sgourakis NG; Boyken SE; Baker D
    Proc Natl Acad Sci U S A; 2020 Mar; 117(13):7208-7215. PubMed ID: 32188784
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fast search algorithms for computational protein design.
    Traoré S; Roberts KE; Allouche D; Donald BR; André I; Schiex T; Barbe S
    J Comput Chem; 2016 May; 37(12):1048-58. PubMed ID: 26833706
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Maintaining and Enhancing Diversity of Sampled Protein Conformations in Robotics-Inspired Methods.
    Abella JR; Moll M; Kavraki LE
    J Comput Biol; 2018 Jan; 25(1):3-20. PubMed ID: 29035572
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.