These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Recent progress in chemically modified siRNAs. Gaglione M; Messere A Mini Rev Med Chem; 2010 Jun; 10(7):578-95. PubMed ID: 20500149 [TBL] [Abstract][Full Text] [Related]
3. Chemical and structural modifications of RNAi therapeutics. Ku SH; Jo SD; Lee YK; Kim K; Kim SH Adv Drug Deliv Rev; 2016 Sep; 104():16-28. PubMed ID: 26549145 [TBL] [Abstract][Full Text] [Related]
7. Advances in siRNA therapeutics and synergistic effect on siRNA activity using emerging dual ribose modifications. Gangopadhyay S; Gore KR RNA Biol; 2022 Jan; 19(1):452-467. PubMed ID: 35352626 [TBL] [Abstract][Full Text] [Related]
8. Gene silencing through RNA interference (RNAi) in vivo: strategies based on the direct application of siRNAs. Aigner A J Biotechnol; 2006 Jun; 124(1):12-25. PubMed ID: 16413079 [TBL] [Abstract][Full Text] [Related]
9. [Chemical Approaches for RNAi Drug Development]. Saito-Tarashima N Yakugaku Zasshi; 2020; 140(10):1259-1268. PubMed ID: 32999205 [TBL] [Abstract][Full Text] [Related]
11. Chemical modification of siRNA. Chernolovskaya EL; Zenkova MA Curr Opin Mol Ther; 2010 Apr; 12(2):158-67. PubMed ID: 20373259 [TBL] [Abstract][Full Text] [Related]
12. RNAi-based drug discovery and its application to therapeutics. Hokaiwado N; Takeshita F; Banas A; Ochiya T IDrugs; 2008 Apr; 11(4):274-8. PubMed ID: 18379962 [TBL] [Abstract][Full Text] [Related]
13. Engineering small interfering RNAs by strategic chemical modification. Bramsen JB; Kjems J Methods Mol Biol; 2013; 942():87-109. PubMed ID: 23027047 [TBL] [Abstract][Full Text] [Related]
14. Chemical and structural diversity of siRNA molecules. Nawrot B; Sipa K Curr Top Med Chem; 2006; 6(9):913-25. PubMed ID: 16787284 [TBL] [Abstract][Full Text] [Related]
15. RNA interference in vivo: toward synthetic small inhibitory RNA-based therapeutics. de Fougerolles A; Manoharan M; Meyers R; Vornlocher HP Methods Enzymol; 2005; 392():278-96. PubMed ID: 15644187 [TBL] [Abstract][Full Text] [Related]
16. Improving RNA interference in mammalian cells by 4'-thio-modified small interfering RNA (siRNA): effect on siRNA activity and nuclease stability when used in combination with 2'-O-alkyl modifications. Dande P; Prakash TP; Sioufi N; Gaus H; Jarres R; Berdeja A; Swayze EE; Griffey RH; Bhat B J Med Chem; 2006 Mar; 49(5):1624-34. PubMed ID: 16509579 [TBL] [Abstract][Full Text] [Related]
17. Gene Silencing using siRNA for Preventing Liver Ischaemia-Reperfusion Injury. Marinho HS; Marcelino P; Soares H; Corvo ML Curr Pharm Des; 2018; 24(23):2692-2700. PubMed ID: 30084326 [TBL] [Abstract][Full Text] [Related]
18. Silencing or stimulation? siRNA delivery and the immune system. Whitehead KA; Dahlman JE; Langer RS; Anderson DG Annu Rev Chem Biomol Eng; 2011; 2():77-96. PubMed ID: 22432611 [TBL] [Abstract][Full Text] [Related]
19. High potency silencing by single-stranded boranophosphate siRNA. Hall AH; Wan J; Spesock A; Sergueeva Z; Shaw BR; Alexander KA Nucleic Acids Res; 2006; 34(9):2773-81. PubMed ID: 16717282 [TBL] [Abstract][Full Text] [Related]
20. Chemical modification of small interfering RNA. Bramsen JB; Kjems J Methods Mol Biol; 2011; 721():77-103. PubMed ID: 21431680 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]