These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
105 related articles for article (PubMed ID: 28379116)
1. Future-year ozone prediction for the United States using updated models and inputs. Collet S; Kidokoro T; Karamchandani P; Shah T; Jung J J Air Waste Manag Assoc; 2017 Aug; 67(8):938-948. PubMed ID: 28379116 [TBL] [Abstract][Full Text] [Related]
2. Future year ozone source attribution modeling study using CMAQ-ISAM. Collet S; Kidokoro T; Karamchandani P; Jung J; Shah T J Air Waste Manag Assoc; 2018 Nov; 68(11):1239-1247. PubMed ID: 29999477 [TBL] [Abstract][Full Text] [Related]
3. Projected ozone trends and changes in the ozone-precursor relationship in the South Coast Air Basin in response to varying reductions of precursor emissions. Fujita EM; Campbell DE; Stockwell WR; Saunders E; Fitzgerald R; Perea R J Air Waste Manag Assoc; 2016 Feb; 66(2):201-14. PubMed ID: 26514212 [TBL] [Abstract][Full Text] [Related]
4. Past and future ozone trends in California's South Coast Air Basin: reconciliation of ambient measurements with past and projected emission inventories. Fujita EM; Campbell DE; Stockwell WR; Lawson DR J Air Waste Manag Assoc; 2013 Jan; 63(1):54-69. PubMed ID: 23447864 [TBL] [Abstract][Full Text] [Related]
5. Precursor reductions and ground-level ozone in the Continental United States. Hidy GM; Blanchard CL J Air Waste Manag Assoc; 2015 Oct; 65(10):1261-82. PubMed ID: 26252366 [TBL] [Abstract][Full Text] [Related]
6. Expected ozone benefits of reducing nitrogen oxide (NO Vinciguerra T; Bull E; Canty T; He H; Zalewsky E; Woodman M; Aburn G; Ehrman S; Dickerson RR J Air Waste Manag Assoc; 2017 Mar; 67(3):279-291. PubMed ID: 27650304 [TBL] [Abstract][Full Text] [Related]
7. Updating the SAPRC Maximum Incremental Reactivity (MIR) scale for the United States from 1988 to 2010. Venecek MA; Carter WPL; Kleeman MJ J Air Waste Manag Assoc; 2018 Dec; 68(12):1301-1316. PubMed ID: 29993352 [TBL] [Abstract][Full Text] [Related]
8. Modeling and direct sensitivity analysis of biogenic emissions impacts on regional ozone formation in the Mexico-U.S. border area. Mendoza-Dominguez A; Wilkinson JG; Yang YJ; Russell AG J Air Waste Manag Assoc; 2000 Jan; 50(1):21-31. PubMed ID: 10680362 [TBL] [Abstract][Full Text] [Related]
9. Intercomparison of chemical mechanisms for air quality policy formulation and assessment under North American conditions. Derwent R J Air Waste Manag Assoc; 2017 Jul; 67(7):789-796. PubMed ID: 28278034 [TBL] [Abstract][Full Text] [Related]
10. Optimization of multipollutant air quality management strategies: A case study for five cities in the United States. Liao KJ; Hou X J Air Waste Manag Assoc; 2015 Jun; 65(6):732-42. PubMed ID: 25976486 [TBL] [Abstract][Full Text] [Related]
11. Modeling the effects of VOC/NOx emissions on ozone synthesis in the cascadia airshed of the Pacific Northwest. Barna M; Lamb B; Westberg H J Air Waste Manag Assoc; 2001 Jul; 51(7):1021-34. PubMed ID: 15658221 [TBL] [Abstract][Full Text] [Related]
12. Sensitivity analysis of ground-level ozone concentration to emission changes in two urban regions of southeast Texas. Lin CJ; Ho TC; Chu HW; Yang H; Chandru S; Krishnarajanagar N; Chiou P; Hopper JR J Environ Manage; 2005 Jun; 75(4):315-23. PubMed ID: 15854725 [TBL] [Abstract][Full Text] [Related]
13. Modeled response of ozone to electricity generation emissions in the northeastern United States using three sensitivity techniques. Couzo E; McCann J; Vizuete W; Blumsack S; West JJ J Air Waste Manag Assoc; 2016 May; 66(5):456-69. PubMed ID: 26796121 [TBL] [Abstract][Full Text] [Related]
14. Ozone trends across the United States over a period of decreasing NOx and VOC emissions. Simon H; Reff A; Wells B; Xing J; Frank N Environ Sci Technol; 2015 Jan; 49(1):186-95. PubMed ID: 25517137 [TBL] [Abstract][Full Text] [Related]
15. Impacts of transportation sector emissions on future U.S. air quality in a changing climate. Part II: Air quality projections and the interplay between emissions and climate change. Campbell P; Zhang Y; Yan F; Lu Z; Streets D Environ Pollut; 2018 Jul; 238():918-930. PubMed ID: 29684896 [TBL] [Abstract][Full Text] [Related]
16. Nonlinear response of ozone to emissions: source apportionment and sensitivity analysis. Cohan DS; Hakami A; Hu Y; Russell AG Environ Sci Technol; 2005 Sep; 39(17):6739-48. PubMed ID: 16190234 [TBL] [Abstract][Full Text] [Related]
17. Modeling Ozone in the Eastern U.S. using a Fuel-Based Mobile Source Emissions Inventory. McDonald BC; McKeen SA; Cui YY; Ahmadov R; Kim SW; Frost GJ; Pollack IB; Peischl J; Ryerson TB; Holloway JS; Graus M; Warneke C; Gilman JB; de Gouw JA; Kaiser J; Keutsch FN; Hanisco TF; Wolfe GM; Trainer M Environ Sci Technol; 2018 Jul; 52(13):7360-7370. PubMed ID: 29870662 [TBL] [Abstract][Full Text] [Related]
18. Source apportionment of emissions from light-duty gasoline vehicles and other sources in the United States for ozone and particulate matter. Vijayaraghavan K; Lindhjem C; Koo B; DenBleyker A; Tai E; Shah T; Alvarez Y; Yarwood G J Air Waste Manag Assoc; 2016 Feb; 66(2):98-119. PubMed ID: 26563640 [TBL] [Abstract][Full Text] [Related]
19. Road-network-Based spatial allocation of on-road mobile source emissions in the Pearl River Delta region, China, and comparisons with population-based approach. Zheng J; Che W; Wang X; Louie P; Zhong L J Air Waste Manag Assoc; 2009 Dec; 59(12):1405-16. PubMed ID: 20066906 [TBL] [Abstract][Full Text] [Related]
20. Personal and ambient exposures to air toxics in Camden, New Jersey. Lioy PJ; Fan Z; Zhang J; Georgopoulos P; Wang SW; Ohman-Strickland P; Wu X; Zhu X; Harrington J; Tang X; Meng Q; Jung KH; Kwon J; Hernandez M; Bonnano L; Held J; Neal J; Res Rep Health Eff Inst; 2011 Aug; (160):3-127; discussion 129-51. PubMed ID: 22097188 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]