These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

628 related articles for article (PubMed ID: 28379213)

  • 1. Energy-dense diet triggers changes in gut microbiota, reorganization of gut‑brain vagal communication and increases body fat accumulation.
    Vaughn AC; Cooper EM; DiLorenzo PM; O'Loughlin LJ; Konkel ME; Peters JH; Hajnal A; Sen T; Lee SH; de La Serre CB; Czaja K
    Acta Neurobiol Exp (Wars); 2017; 77(1):18-30. PubMed ID: 28379213
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Diet-driven microbiota dysbiosis is associated with vagal remodeling and obesity.
    Sen T; Cawthon CR; Ihde BT; Hajnal A; DiLorenzo PM; de La Serre CB; Czaja K
    Physiol Behav; 2017 May; 173():305-317. PubMed ID: 28249783
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Gut microbiota composition modulates inflammation and structure of the vagal afferent pathway.
    Kim JS; Kirkland RA; Lee SH; Cawthon CR; Rzepka KW; Minaya DM; de Lartigue G; Czaja K; de La Serre CB
    Physiol Behav; 2020 Oct; 225():113082. PubMed ID: 32682966
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Roux‑en‑Y gastric bypass surgery triggers rapid DNA fragmentation in vagal afferent neurons in rats.
    Minaya DM; Di Lorenzo PM; Hajnal A; Czaja K
    Acta Neurobiol Exp (Wars); 2019; 79(4):432-444. PubMed ID: 31885399
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Consumption of a high energy density diet triggers microbiota dysbiosis, hepatic lipidosis, and microglia activation in the nucleus of the solitary tract in rats.
    Minaya DM; Turlej A; Joshi A; Nagy T; Weinstein N; DiLorenzo P; Hajnal A; Czaja K
    Nutr Diabetes; 2020 Jun; 10(1):20. PubMed ID: 32518225
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Gut bacteria interaction with vagal afferents.
    Cawthon CR; de La Serre CB
    Brain Res; 2018 Aug; 1693(Pt B):134-139. PubMed ID: 29360469
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Lean rats gained more body weight than obese ones from a high-fibre diet.
    Li S; Zhang C; Gu Y; Chen L; Ou S; Wang Y; Peng X
    Br J Nutr; 2015 Oct; 114(8):1188-94. PubMed ID: 26316354
    [TBL] [Abstract][Full Text] [Related]  

  • 8. High fat diet induced changes in gastric vagal afferent response to adiponectin.
    Kentish SJ; Ratcliff K; Li H; Wittert GA; Page AJ
    Physiol Behav; 2015 Dec; 152(Pt B):354-62. PubMed ID: 26074203
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Changes in microglial activation within the hindbrain, nodose ganglia, and the spinal cord following subdiaphragmatic vagotomy.
    Gallaher ZR; Ryu V; Herzog T; Ritter RC; Czaja K
    Neurosci Lett; 2012 Mar; 513(1):31-6. PubMed ID: 22342909
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dietary Uncoupling of Gut Microbiota and Energy Harvesting from Obesity and Glucose Tolerance in Mice.
    Dalby MJ; Ross AW; Walker AW; Morgan PJ
    Cell Rep; 2017 Nov; 21(6):1521-1533. PubMed ID: 29117558
    [TBL] [Abstract][Full Text] [Related]  

  • 11. NMDA channels control meal size via central vagal afferent terminals.
    Gillespie BR; Burns GA; Ritter RC
    Am J Physiol Regul Integr Comp Physiol; 2005 Nov; 289(5):R1504-11. PubMed ID: 16020524
    [TBL] [Abstract][Full Text] [Related]  

  • 12. TRPV1 Channels and Gastric Vagal Afferent Signalling in Lean and High Fat Diet Induced Obese Mice.
    Kentish SJ; Frisby CL; Kritas S; Li H; Hatzinikolas G; O'Donnell TA; Wittert GA; Page AJ
    PLoS One; 2015; 10(8):e0135892. PubMed ID: 26285043
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Maternal high fat diet and its consequence on the gut microbiome: A rat model.
    Mann PE; Huynh K; Widmer G
    Gut Microbes; 2018 Mar; 9(2):143-154. PubMed ID: 29135334
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Inducible nitric oxide synthase-derived nitric oxide reduces vagal satiety signalling in obese mice.
    Yu Y; Park SJ; Beyak MJ
    J Physiol; 2019 Mar; 597(6):1487-1502. PubMed ID: 30565225
    [TBL] [Abstract][Full Text] [Related]  

  • 15. High-Fat Diet-Induced Obesity Ablates Gastric Vagal Afferent Circadian Rhythms.
    Kentish SJ; Vincent AD; Kennaway DJ; Wittert GA; Page AJ
    J Neurosci; 2016 Mar; 36(11):3199-207. PubMed ID: 26985030
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Diet-induced adaptation of vagal afferent function.
    Kentish S; Li H; Philp LK; O'Donnell TA; Isaacs NJ; Young RL; Wittert GA; Blackshaw LA; Page AJ
    J Physiol; 2012 Jan; 590(1):209-21. PubMed ID: 22063628
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Four-week administration of nicotinemoderately impacts blood metabolic profile and gut microbiota in a diet-dependent manner.
    Wang R; Li S; Jin L; Zhang W; Liu N; Wang H; Wang Z; Wei P; Li F; Yu J; Lu S; Chen Y; Li Z; Wu C
    Biomed Pharmacother; 2019 Jul; 115():108945. PubMed ID: 31100541
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The role of gut microbiota in the resistance to obesity in mice fed a high fat diet.
    Cao W; Chin Y; Chen X; Mi Y; Xue C; Wang Y; Tang Q
    Int J Food Sci Nutr; 2020 Jun; 71(4):453-463. PubMed ID: 31774018
    [TBL] [Abstract][Full Text] [Related]  

  • 19. High fat diet attenuates glucose-dependent facilitation of 5-HT3 -mediated responses in rat gastric vagal afferents.
    Troy AE; Simmonds SS; Stocker SD; Browning KN
    J Physiol; 2016 Jan; 594(1):99-114. PubMed ID: 26456775
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    Hua Y; Fan R; Zhao L; Tong C; Qian X; Zhang M; Xiao R; Ma W
    Br J Nutr; 2020 Dec; 124(12):1251-1263. PubMed ID: 32475367
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 32.