These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 28379223)

  • 1. In vitro nasal mucosa gland-like structure formation on a chip.
    Na K; Lee M; Shin HW; Chung S
    Lab Chip; 2017 May; 17(9):1578-1584. PubMed ID: 28379223
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Real-time quantitative monitoring of
    Gholizadeh H; Ong HX; Bradbury P; Kourmatzis A; Traini D; Young P; Li M; Cheng S
    Expert Opin Drug Deliv; 2021 Jun; 18(6):803-818. PubMed ID: 33410717
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Expression and localization of the thromboxane A2 receptor in human nasal mucosa.
    Shirasaki H; Kikuchi M; Seki N; Kanaizumi E; Watanabe K; Himi T
    Prostaglandins Leukot Essent Fatty Acids; 2007 Jun; 76(6):315-20. PubMed ID: 17513100
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Microfluidic lung airway-on-a-chip with arrayable suspended gels for studying epithelial and smooth muscle cell interactions.
    Humayun M; Chow CW; Young EWK
    Lab Chip; 2018 May; 18(9):1298-1309. PubMed ID: 29651473
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Expression and localization of purinergic P2Y(12) receptor in human nasal mucosa.
    Shirasaki H; Kanaizumi E; Seki N; Kikuchi M; Himi T
    Allergol Int; 2013 Jun; 62(2):239-44. PubMed ID: 23612493
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Advances in asthma drug discovery: evaluating the potential of nasal cell sampling and beyond.
    Calzetta L; Rogliani P; Cazzola M; Matera MG
    Expert Opin Drug Discov; 2014 Jun; 9(6):595-607. PubMed ID: 24749518
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The use of human nasal in vitro cell systems during drug discovery and development.
    Dimova S; Brewster ME; Noppe M; Jorissen M; Augustijns P
    Toxicol In Vitro; 2005 Feb; 19(1):107-22. PubMed ID: 15582362
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Expression profiles of fibrinolytic components in nasal mucosa.
    Sejima T; Madoiwa S; Mimuro J; Sugo T; Ishida T; Ichimura K; Sakata Y
    Histochem Cell Biol; 2004 Jul; 122(1):61-73. PubMed ID: 15197554
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Expression and the role of HIF-1alpha and VEGF in human nasal epithelial cells].
    Yang L; Dong Z
    Lin Chuang Er Bi Yan Hou Tou Jing Wai Ke Za Zhi; 2008 Apr; 22(8):341-5. PubMed ID: 18595517
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Comparative study of three primary culture methods of human epithelial cells of nasal polyps in vitro].
    Wang M; Zhang G; Wang X; Li J; Wang H
    Lin Chuang Er Bi Yan Hou Tou Jing Wai Ke Za Zhi; 2011 Sep; 25(17):796-9. PubMed ID: 22070075
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hypoxia induced chemokine expression in nasal epithelial cells: development of an in vitro model for chronic rhinosinusitis.
    Pahl A; Szelenyi S; Brune K
    ALTEX; 2006; 23(2):59-63. PubMed ID: 16688382
    [TBL] [Abstract][Full Text] [Related]  

  • 12. HMGB1-TLR4 signaling contributes to the secretion of interleukin 6 and interleukin 8 by nasal epithelial cells.
    Shimizu S; Kouzaki H; Kato T; Tojima I; Shimizu T
    Am J Rhinol Allergy; 2016 May; 30(3):167-72. PubMed ID: 27216346
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Clara cell protein 16 and eosinophil cationic protein production in chronically inflamed sinonasal mucosa.
    Špadijer-Mirković C; Perić A; Belić B; Vojvodić D
    Int Forum Allergy Rhinol; 2016 May; 6(5):529-36. PubMed ID: 26833624
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Development of glandular models from human nasal progenitor cells.
    Wu X; Mimms R; Banigan M; Lee M; Elkis V; Peters-Hall JR; Mubeen H; Joselow A; Peña MT; Rose MC
    Am J Respir Cell Mol Biol; 2015 May; 52(5):535-42. PubMed ID: 25412193
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Desloratadine citrate disodium injection, a potent histamine H(1) receptor antagonist, inhibits chemokine production in ovalbumin-induced allergic rhinitis guinea pig model and histamine-induced human nasal epithelial cells via inhibiting the ERK1/2 and NF-kappa B signal cascades.
    Chen M; Xu S; Zhou P; He G; Jie Q; Wu Y
    Eur J Pharmacol; 2015 Nov; 767():98-107. PubMed ID: 26455479
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Bioprinted Liver-on-a-Chip for Drug Screening Applications.
    Knowlton S; Tasoglu S
    Trends Biotechnol; 2016 Sep; 34(9):681-682. PubMed ID: 27291461
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Transport of anti-allergic drugs across the passage cultured human nasal epithelial cell monolayer.
    Lin H; Yoo JW; Roh HJ; Lee MK; Chung SJ; Shim CK; Kim DD
    Eur J Pharm Sci; 2005 Oct; 26(2):203-10. PubMed ID: 16087322
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Organs-on-chips with integrated electrodes for trans-epithelial electrical resistance (TEER) measurements of human epithelial barrier function.
    Henry OYF; Villenave R; Cronce MJ; Leineweber WD; Benz MA; Ingber DE
    Lab Chip; 2017 Jun; 17(13):2264-2271. PubMed ID: 28598479
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Expression of P-glycoprotein in excised human nasal mucosa and optimized models of RPMI 2650 cells.
    Dolberg AM; Reichl S
    Int J Pharm; 2016 Jul; 508(1-2):22-33. PubMed ID: 27155589
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Tissue factor and tissue factor pathway inhibitor in nasal mucosa and nasal secretions of chronic rhinosinusitis with nasal polyp.
    Shimizu S; Ogawa T; Takezawa K; Tojima I; Kouzaki H; Shimizu T
    Am J Rhinol Allergy; 2015; 29(4):235-42. PubMed ID: 26163243
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.