These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

181 related articles for article (PubMed ID: 28379338)

  • 1. CMDR based differential evolution identifies the epistatic interaction in genome-wide association studies.
    Yang CH; Chuang LY; Lin YD
    Bioinformatics; 2017 Aug; 33(15):2354-2362. PubMed ID: 28379338
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Multiobjective multifactor dimensionality reduction to detect SNP-SNP interactions.
    Yang CH; Chuang LY; Lin YD
    Bioinformatics; 2018 Jul; 34(13):2228-2236. PubMed ID: 29471406
    [TBL] [Abstract][Full Text] [Related]  

  • 3. DualWMDR: Detecting epistatic interaction with dual screening and multifactor dimensionality reduction.
    Cao X; Yu G; Ren W; Guo M; Wang J
    Hum Mutat; 2020 Mar; 41(3):719-734. PubMed ID: 31705708
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A rapid epistatic mixed-model association analysis by linear retransformations of genomic estimated values.
    Ning C; Wang D; Kang H; Mrode R; Zhou L; Xu S; Liu JF
    Bioinformatics; 2018 Jun; 34(11):1817-1825. PubMed ID: 29342229
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Markov blanket-based method for detecting causal SNPs in GWAS.
    Han B; Park M; Chen XW
    BMC Bioinformatics; 2010 Apr; 11 Suppl 3(Suppl 3):S5. PubMed ID: 20438652
    [TBL] [Abstract][Full Text] [Related]  

  • 6. SMMB: a stochastic Markov blanket framework strategy for epistasis detection in GWAS.
    Niel C; Sinoquet C; Dina C; Rocheleau G
    Bioinformatics; 2018 Aug; 34(16):2773-2780. PubMed ID: 29547902
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A novel survival multifactor dimensionality reduction method for detecting gene-gene interactions with application to bladder cancer prognosis.
    Gui J; Moore JH; Kelsey KT; Marsit CJ; Karagas MR; Andrew AS
    Hum Genet; 2011 Jan; 129(1):101-10. PubMed ID: 20981448
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Predictive rule inference for epistatic interaction detection in genome-wide association studies.
    Wan X; Yang C; Yang Q; Xue H; Tang NL; Yu W
    Bioinformatics; 2010 Jan; 26(1):30-7. PubMed ID: 19880365
    [TBL] [Abstract][Full Text] [Related]  

  • 9. GWIS--model-free, fast and exhaustive search for epistatic interactions in case-control GWAS.
    Goudey B; Rawlinson D; Wang Q; Shi F; Ferra H; Campbell RM; Stern L; Inouye MT; Ong CS; Kowalczyk A
    BMC Genomics; 2013; 14 Suppl 3(Suppl 3):S10. PubMed ID: 23819779
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A novel method to identify high order gene-gene interactions in genome-wide association studies: gene-based MDR.
    Oh S; Lee J; Kwon MS; Weir B; Ha K; Park T
    BMC Bioinformatics; 2012 Jun; 13 Suppl 9(Suppl 9):S5. PubMed ID: 22901090
    [TBL] [Abstract][Full Text] [Related]  

  • 11. High-throughput analysis of epistasis in genome-wide association studies with BiForce.
    Gyenesei A; Moody J; Semple CA; Haley CS; Wei WH
    Bioinformatics; 2012 Aug; 28(15):1957-64. PubMed ID: 22618535
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Utilizing Deep Learning and Genome Wide Association Studies for Epistatic-Driven Preterm Birth Classification in African-American Women.
    Fergus P; Montanez CC; Abdulaimma B; Lisboa P; Chalmers C; Pineles B
    IEEE/ACM Trans Comput Biol Bioinform; 2020; 17(2):668-678. PubMed ID: 30183645
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dimensionality reduction approach for many-objective epistasis analysis.
    Yang CH; Hou MF; Chuang LY; Yang CS; Lin YD
    Brief Bioinform; 2023 Jan; 24(1):. PubMed ID: 36458451
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Novel Detection Method for High-Order SNP Epistatic Interactions Based on Explicit-Encoding-Based Multitasking Harmony Search.
    Tuo S; Jiang J
    Interdiscip Sci; 2024 Sep; 16(3):688-711. PubMed ID: 38954231
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Class Balanced Multifactor Dimensionality Reduction to Detect Gene-Gene Interactions.
    Yang CH; Lin YD; Chuang LY
    IEEE/ACM Trans Comput Biol Bioinform; 2020; 17(1):71-81. PubMed ID: 30040653
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cloud computing for detecting high-order genome-wide epistatic interaction via dynamic clustering.
    Guo X; Meng Y; Yu N; Pan Y
    BMC Bioinformatics; 2014 Apr; 15():102. PubMed ID: 24717145
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Detecting genome-wide epistases based on the clustering of relatively frequent items.
    Xie M; Li J; Jiang T
    Bioinformatics; 2012 Jan; 28(1):5-12. PubMed ID: 22053078
    [TBL] [Abstract][Full Text] [Related]  

  • 18. SNPHarvester: a filtering-based approach for detecting epistatic interactions in genome-wide association studies.
    Yang C; He Z; Wan X; Yang Q; Xue H; Yu W
    Bioinformatics; 2009 Feb; 25(4):504-11. PubMed ID: 19098029
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Multiobjective differential evolution-based multifactor dimensionality reduction for detecting gene-gene interactions.
    Yang CH; Chuang LY; Lin YD
    Sci Rep; 2017 Oct; 7(1):12869. PubMed ID: 28993686
    [TBL] [Abstract][Full Text] [Related]  

  • 20. TSGSIS: a high-dimensional grouped variable selection approach for detection of whole-genome SNP-SNP interactions.
    Fang YH; Wang JH; Hsiung CA
    Bioinformatics; 2017 Nov; 33(22):3595-3602. PubMed ID: 28651334
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.