These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
564 related articles for article (PubMed ID: 28379368)
1. SCODE: an efficient regulatory network inference algorithm from single-cell RNA-Seq during differentiation. Matsumoto H; Kiryu H; Furusawa C; Ko MSH; Ko SBH; Gouda N; Hayashi T; Nikaido I Bioinformatics; 2017 Aug; 33(15):2314-2321. PubMed ID: 28379368 [TBL] [Abstract][Full Text] [Related]
2. Gene regulation inference from single-cell RNA-seq data with linear differential equations and velocity inference. Aubin-Frankowski PC; Vert JP Bioinformatics; 2020 Sep; 36(18):4774-4780. PubMed ID: 33026066 [TBL] [Abstract][Full Text] [Related]
3. scEpath: energy landscape-based inference of transition probabilities and cellular trajectories from single-cell transcriptomic data. Jin S; MacLean AL; Peng T; Nie Q Bioinformatics; 2018 Jun; 34(12):2077-2086. PubMed ID: 29415263 [TBL] [Abstract][Full Text] [Related]
4. STGRNS: an interpretable transformer-based method for inferring gene regulatory networks from single-cell transcriptomic data. Xu J; Zhang A; Liu F; Zhang X Bioinformatics; 2023 Apr; 39(4):. PubMed ID: 37004161 [TBL] [Abstract][Full Text] [Related]
5. scPADGRN: A preconditioned ADMM approach for reconstructing dynamic gene regulatory network using single-cell RNA sequencing data. Zheng X; Huang Y; Zou X PLoS Comput Biol; 2020 Jul; 16(7):e1007471. PubMed ID: 32716923 [TBL] [Abstract][Full Text] [Related]
6. A Bayesian framework for the inference of gene regulatory networks from time and pseudo-time series data. Sanchez-Castillo M; Blanco D; Tienda-Luna IM; Carrion MC; Huang Y Bioinformatics; 2018 Mar; 34(6):964-970. PubMed ID: 29028984 [TBL] [Abstract][Full Text] [Related]
7. Model-based branching point detection in single-cell data by K-branches clustering. Chlis NK; Wolf FA; Theis FJ Bioinformatics; 2017 Oct; 33(20):3211-3219. PubMed ID: 28582478 [TBL] [Abstract][Full Text] [Related]
8. SFINN: inferring gene regulatory network from single-cell and spatial transcriptomic data with shared factor neighborhood and integrated neural network. Wang Y; Zhou F; Guan J Bioinformatics; 2024 Jul; 40(7):. PubMed ID: 38950180 [TBL] [Abstract][Full Text] [Related]
9. SCOUP: a probabilistic model based on the Ornstein-Uhlenbeck process to analyze single-cell expression data during differentiation. Matsumoto H; Kiryu H BMC Bioinformatics; 2016 Jun; 17(1):232. PubMed ID: 27277014 [TBL] [Abstract][Full Text] [Related]
10. Identifying strengths and weaknesses of methods for computational network inference from single-cell RNA-seq data. McCalla SG; Fotuhi Siahpirani A; Li J; Pyne S; Stone M; Periyasamy V; Shin J; Roy S G3 (Bethesda); 2023 Mar; 13(3):. PubMed ID: 36626328 [TBL] [Abstract][Full Text] [Related]
11. MuDCoD: multi-subject community detection in personalized dynamic gene networks from single-cell RNA sequencing. Şapcı AOB; Lu S; Yan S; Ay F; Tastan O; Keleş S Bioinformatics; 2023 Oct; 39(10):. PubMed ID: 37740957 [TBL] [Abstract][Full Text] [Related]
12. Topological benchmarking of algorithms to infer gene regulatory networks from single-cell RNA-seq data. Stock M; Popp N; Fiorentino J; Scialdone A Bioinformatics; 2024 May; 40(5):. PubMed ID: 38627250 [TBL] [Abstract][Full Text] [Related]
13. Falco: a quick and flexible single-cell RNA-seq processing framework on the cloud. Yang A; Troup M; Lin P; Ho JW Bioinformatics; 2017 Mar; 33(5):767-769. PubMed ID: 28025200 [TBL] [Abstract][Full Text] [Related]
14. Graph attention network for link prediction of gene regulations from single-cell RNA-sequencing data. Chen G; Liu ZP Bioinformatics; 2022 Sep; 38(19):4522-4529. PubMed ID: 35961023 [TBL] [Abstract][Full Text] [Related]
15. MICRAT: a novel algorithm for inferring gene regulatory networks using time series gene expression data. Yang B; Xu Y; Maxwell A; Koh W; Gong P; Zhang C BMC Syst Biol; 2018 Dec; 12(Suppl 7):115. PubMed ID: 30547796 [TBL] [Abstract][Full Text] [Related]
16. DeepGRNCS: deep learning-based framework for jointly inferring gene regulatory networks across cell subpopulations. Lei Y; Huang XT; Guo X; Hang Katie Chan K; Gao L Brief Bioinform; 2024 May; 25(4):. PubMed ID: 38980373 [TBL] [Abstract][Full Text] [Related]
17. scShaper: an ensemble method for fast and accurate linear trajectory inference from single-cell RNA-seq data. Smolander J; Junttila S; Venäläinen MS; Elo LL Bioinformatics; 2022 Feb; 38(5):1328-1335. PubMed ID: 34888622 [TBL] [Abstract][Full Text] [Related]
18. TASIC: determining branching models from time series single cell data. Rashid S; Kotton DN; Bar-Joseph Z Bioinformatics; 2017 Aug; 33(16):2504-2512. PubMed ID: 28379537 [TBL] [Abstract][Full Text] [Related]
19. Inferring Causal Gene Regulatory Networks from Coupled Single-Cell Expression Dynamics Using Scribe. Qiu X; Rahimzamani A; Wang L; Ren B; Mao Q; Durham T; McFaline-Figueroa JL; Saunders L; Trapnell C; Kannan S Cell Syst; 2020 Mar; 10(3):265-274.e11. PubMed ID: 32135093 [TBL] [Abstract][Full Text] [Related]
20. Scalable preprocessing for sparse scRNA-seq data exploiting prior knowledge. Mukherjee S; Zhang Y; Fan J; Seelig G; Kannan S Bioinformatics; 2018 Jul; 34(13):i124-i132. PubMed ID: 29949988 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]