These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 28379428)

  • 21. Studying the influence of surface topography on bacterial adhesion using spatially organized microtopographic surface patterns.
    Perera-Costa D; Bruque JM; González-Martín ML; Gómez-García AC; Vadillo-Rodríguez V
    Langmuir; 2014 Apr; 30(16):4633-41. PubMed ID: 24697600
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Basic and applied aspects of microbial adhesion at the hydrocarbon:water interface.
    Rosenberg M
    Crit Rev Microbiol; 1991; 18(2):159-73. PubMed ID: 1930676
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Comparison of surface hydrophobicity of piliated and non-piliated clones of Corynebacterium renale and Corynebacterium pilosum.
    Ito H; Ono E; Yanagawa R
    Vet Microbiol; 1987 Jun; 14(2):165-71. PubMed ID: 2889288
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A modified microbial adhesion to hydrocarbons assay to account for the presence of hydrocarbon droplets.
    Zoueki CW; Tufenkji N; Ghoshal S
    J Colloid Interface Sci; 2010 Apr; 344(2):492-6. PubMed ID: 20129613
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Staphylococcus epidermidis adhesion on hydrophobic and hydrophilic textured biomaterial surfaces.
    Xu LC; Siedlecki CA
    Biomed Mater; 2014 Jun; 9(3):035003. PubMed ID: 24687453
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Bacterial adhesion rate on food grade ceramics and Teflon as kitchen worktop surfaces.
    Zore A; Bezek K; Jevšnik M; Abram A; Runko V; Slišković I; Raspor P; Kovačević D; Bohinc K
    Int J Food Microbiol; 2020 Nov; 332():108764. PubMed ID: 32585372
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Role and behaviour of the hydrophobic conditions in bacterial adhesion to incurrent siphon in a bivalve mollusc.
    Llanos J; Garcia-Tello P
    Acta Microbiol Pol; 2000; 49(1):75-82. PubMed ID: 10997493
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Halotolerance and effect of salt on hydrophobicity in hydrocarbon-degrading bacteria.
    Longang A; Buck C; Kirkwood KM
    Environ Technol; 2016; 37(9):1133-40. PubMed ID: 26915518
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Characterization of the cell surface properties of drinking water pathogens by microbial adhesion to hydrocarbon and electrophoretic mobility measurements.
    Popovici J; White CP; Hoelle J; Kinkle BK; Lytle DA
    Colloids Surf B Biointerfaces; 2014 Jun; 118():126-32. PubMed ID: 24815929
    [TBL] [Abstract][Full Text] [Related]  

  • 30. [Influence of alkaline environment on the hydrophobicity of starved Enterococcus faecalis].
    Lu T; Xu Q
    Nan Fang Yi Ke Da Xue Xue Bao; 2012 May; 32(5):681-4. PubMed ID: 22588924
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The influence of cell and substratum surface hydrophobicities on microbial attachment.
    Liu Y; Yang SF; Li Y; Xu H; Qin L; Tay JH
    J Biotechnol; 2004 Jun; 110(3):251-6. PubMed ID: 15163515
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Comparison of contact angle measurement and microbial adhesion to solvents for assaying electron donor-electron acceptor (acid-base) properties of bacterial surface.
    Hamadi F; Latrache H
    Colloids Surf B Biointerfaces; 2008 Aug; 65(1):134-9. PubMed ID: 18467077
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Influence of adhesion on aerobic biodegradation and bioremediation of liquid hydrocarbons.
    Abbasnezhad H; Gray M; Foght JM
    Appl Microbiol Biotechnol; 2011 Nov; 92(4):653-75. PubMed ID: 21964551
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Relationship between the extracellular polymeric substances and surface characteristics of Rhodopseudomonas acidophila.
    Sheng GP; Yu HQ
    Appl Microbiol Biotechnol; 2006 Aug; 72(1):126-131. PubMed ID: 16292527
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Effects of DNP on the cell surface properties of marine bacteria and its implication for adhesion to surfaces.
    Jain A; Nishad KK; Bhosle NB
    Biofouling; 2007; 23(3-4):171-7. PubMed ID: 17653928
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Residence time dependent desorption of Staphylococcus epidermidis from hydrophobic and hydrophilic substrata.
    Boks NP; Kaper HJ; Norde W; Busscher HJ; van der Mei HC
    Colloids Surf B Biointerfaces; 2008 Dec; 67(2):276-8. PubMed ID: 18835700
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Effects of Material Properties on Bacterial Adhesion and Biofilm Formation.
    Song F; Koo H; Ren D
    J Dent Res; 2015 Aug; 94(8):1027-34. PubMed ID: 26001706
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Landing Dynamics of Swimming Bacteria on a Polymeric Surface: Effect of Surface Properties.
    Qi M; Gong X; Wu B; Zhang G
    Langmuir; 2017 Apr; 33(14):3525-3533. PubMed ID: 28298087
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Insight into heterogeneity in cell-surface hydrophobicity and ability to degrade hydrocarbons among cells of two hydrocarbon-degrading bacterial populations.
    Obuekwe CO; Al-Jadi ZK; Al-Saleh E
    Can J Microbiol; 2007 Feb; 53(2):252-60. PubMed ID: 17496974
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Surface active properties of bacterial strains isolated from petroleum hydrocarbon-bioremediated soil.
    Płaza GA; Ulfig K; Brigmon RL
    Pol J Microbiol; 2005; 54(2):161-7. PubMed ID: 16209110
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.