These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 28379701)

  • 1. Large Block Copolymer Self-Assembly for Fabrication of Subwavelength Nanostructures for Applications in Optics.
    Mokarian-Tabari P; Senthamaraikannan R; Glynn C; Collins TW; Cummins C; Nugent D; O'Dwyer C; Morris MA
    Nano Lett; 2017 May; 17(5):2973-2978. PubMed ID: 28379701
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Double-Sided, Omnidirectional γ-AlOOH Hierarchical Nanostructures: Imparting Enhanced Antireflective Properties with Self-Cleaning Capacity for Optical Devices.
    Halan Joghee S; Uthandi KM; Singh N; Katti S; Kumar P; Kaur MP; Pullithadathil B
    Langmuir; 2021 Jun; 37(23):6953-6966. PubMed ID: 34060322
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nanofabrication of broad-band antireflective surfaces using self-assembly of block copolymers.
    Päivänranta B; Sahoo PK; Tocce E; Auzelyte V; Ekinci Y; Solak HH; Liu CC; Stuen KO; Nealey PF; David C
    ACS Nano; 2011 Mar; 5(3):1860-4. PubMed ID: 21323325
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Superhydrophobic and omnidirectional antireflective surfaces from nanostructured ormosil colloids.
    Yildirim A; Khudiyev T; Daglar B; Budunoglu H; Okyay AK; Bayindir M
    ACS Appl Mater Interfaces; 2013 Feb; 5(3):853-60. PubMed ID: 23281919
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mechanically-Durable Antireflective Subwavelength Nanoholes on Glass Surfaces Using Lithography-Free Fabrication.
    Karadzhov I; Paulillo B; Rombaut J; Koch KW; Mazumder P; Pruneri V
    ACS Appl Mater Interfaces; 2024 Apr; 16(15):19672-19680. PubMed ID: 38576132
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fabrication of Silicon Nanobelts and Nanopillars by Soft Lithography for Hydrophobic and Hydrophilic Photonic Surfaces.
    Baquedano E; Martinez RV; Llorens JM; Postigo PA
    Nanomaterials (Basel); 2017 May; 7(5):. PubMed ID: 28492474
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Single-Step Fabrication of Longtail Glasswing Butterfly-Inspired Omnidirectional Antireflective Structures.
    Lai CJ; Tsai HP; Chen JY; Wu MX; Chen YJ; Lin KY; Yang HT
    Nanomaterials (Basel); 2022 May; 12(11):. PubMed ID: 35683712
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Improved broadband and quasi-omnidirectional anti-reflection properties with biomimetic silicon nanostructures.
    Huang YF; Chattopadhyay S; Jen YJ; Peng CY; Liu TA; Hsu YK; Pan CL; Lo HC; Hsu CH; Chang YH; Lee CS; Chen KH; Chen LC
    Nat Nanotechnol; 2007 Dec; 2(12):770-4. PubMed ID: 18654429
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Tailored antireflective biomimetic nanostructures for UV applications.
    Morhard C; Pacholski C; Lehr D; Brunner R; Helgert M; Sundermann M; Spatz JP
    Nanotechnology; 2010 Oct; 21(42):425301. PubMed ID: 20858934
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bioinspired periodic pinecone-shaped Si subwavelength nanostructures for broadband and omnidirectional antireflective surface.
    Leem JW; Yu JS
    J Nanosci Nanotechnol; 2012 Oct; 12(10):7932-8. PubMed ID: 23421159
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Packaging Glass with a Hierarchically Nanostructured Surface: A Universal Method to Achieve Self-Cleaning Omnidirectional Solar Cells.
    Lin CA; Tsai ML; Wei WR; Lai KY; He JH
    ACS Nano; 2016 Jan; 10(1):549-55. PubMed ID: 26623934
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Broadband and crack-free antireflection coatings by self-assembled moth eye patterns.
    Galeotti F; Trespidi F; Timò G; Pasini M
    ACS Appl Mater Interfaces; 2014 Apr; 6(8):5827-34. PubMed ID: 24670669
    [TBL] [Abstract][Full Text] [Related]  

  • 13. All-Metal Broadband Optical Absorbers Based on Block Copolymer Nanolithography.
    Hulkkonen H; Sah A; Niemi T
    ACS Appl Mater Interfaces; 2018 Dec; 10(49):42941-42947. PubMed ID: 30421602
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Block Copolymer Nanocomposites with High Refractive Index Contrast for One-Step Photonics.
    Song DP; Li C; Li W; Watkins JJ
    ACS Nano; 2016 Jan; 10(1):1216-23. PubMed ID: 26713452
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A simple and fast fabrication of a both self-cleanable and deep-UV antireflective quartz nanostructured surface.
    Kim JS; Jeong HW; Lee W; Park BG; Kim BM; Lee KB
    Nanoscale Res Lett; 2012 Aug; 7(1):430. PubMed ID: 22853428
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Block Copolymer Nanopatterning for Nonsemiconductor Device Applications.
    Yang GG; Choi HJ; Han KH; Kim JH; Lee CW; Jung EI; Jin HM; Kim SO
    ACS Appl Mater Interfaces; 2022 Mar; 14(10):12011-12037. PubMed ID: 35230079
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Synthesis of Surface-Reinforced Biodegradable Chitosan Nanoparticles and Their Application in Nanostructured Antireflective and Self-Cleaning Surfaces.
    Jung CL; Park SC; Lim H
    ACS Appl Mater Interfaces; 2019 Oct; 11(43):40835-40841. PubMed ID: 31577413
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Directed self-assembly of a high-chi block copolymer for the fabrication of optical nanoresonators.
    Rasappa S; Schulte L; Ndoni S; Niemi T
    Nanoscale; 2018 Oct; 10(38):18306-18314. PubMed ID: 30246842
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Inverse Moth Eye Nanostructures with Enhanced Antireflection and Contamination Resistance.
    Diao Z; Hirte J; Chen W; Spatz JP
    ACS Omega; 2017 Aug; 2(8):5012-5018. PubMed ID: 31457778
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biomimetic Omnidirectional Antireflective Glass via Direct Ultrafast Laser Nanostructuring.
    Papadopoulos A; Skoulas E; Mimidis A; Perrakis G; Kenanakis G; Tsibidis GD; Stratakis E
    Adv Mater; 2019 Aug; 31(32):e1901123. PubMed ID: 31231905
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.