These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
195 related articles for article (PubMed ID: 28379994)
1. GOTHiC, a probabilistic model to resolve complex biases and to identify real interactions in Hi-C data. Mifsud B; Martincorena I; Darbo E; Sugar R; Schoenfelder S; Fraser P; Luscombe NM PLoS One; 2017; 12(4):e0174744. PubMed ID: 28379994 [TBL] [Abstract][Full Text] [Related]
2. HiCcompare: an R-package for joint normalization and comparison of HI-C datasets. Stansfield JC; Cresswell KG; Vladimirov VI; Dozmorov MG BMC Bioinformatics; 2018 Jul; 19(1):279. PubMed ID: 30064362 [TBL] [Abstract][Full Text] [Related]
3. Normalizing Metagenomic Hi-C Data and Detecting Spurious Contacts Using Zero-Inflated Negative Binomial Regression. Du Y; Laperriere SM; Fuhrman J; Sun F J Comput Biol; 2022 Feb; 29(2):106-120. PubMed ID: 35020412 [TBL] [Abstract][Full Text] [Related]
4. Mariner: explore the Hi-Cs. Davis ES; Parker SM; Kramer NE; Flores JP; Kiran M; Phanstiel DH Bioinformatics; 2024 Jun; 40(6):. PubMed ID: 38814811 [TBL] [Abstract][Full Text] [Related]
5. Correction: GOTHiC, a probabilistic model to resolve complex biases and to identify real interactions in Hi-C data. PLOS ONE Staff PLoS One; 2017; 12(5):e0177280. PubMed ID: 28467502 [TBL] [Abstract][Full Text] [Related]
7. Chrom-Lasso: a lasso regression-based model to detect functional interactions using Hi-C data. Lu J; Wang X; Sun K; Lan X Brief Bioinform; 2021 Nov; 22(6):. PubMed ID: 34013331 [TBL] [Abstract][Full Text] [Related]
8. ZipHiC: a novel Bayesian framework to identify enriched interactions and experimental biases in Hi-C data. Osuntoki IG; Harrison A; Dai H; Bao Y; Zabet NR Bioinformatics; 2022 Jul; 38(14):3523-3531. PubMed ID: 35678507 [TBL] [Abstract][Full Text] [Related]
9. Identification and utilization of copy number information for correcting Hi-C contact map of cancer cell lines. Khalil AIS; Muzaki SRBM; Chattopadhyay A; Sanyal A BMC Bioinformatics; 2020 Nov; 21(1):506. PubMed ID: 33160308 [TBL] [Abstract][Full Text] [Related]
10. Seq2pathway: an R/Bioconductor package for pathway analysis of next-generation sequencing data. Wang B; Cunningham JM; Yang XH Bioinformatics; 2015 Sep; 31(18):3043-5. PubMed ID: 25979472 [TBL] [Abstract][Full Text] [Related]
12. Rcpi: R/Bioconductor package to generate various descriptors of proteins, compounds and their interactions. Cao DS; Xiao N; Xu QS; Chen AF Bioinformatics; 2015 Jan; 31(2):279-81. PubMed ID: 25246429 [TBL] [Abstract][Full Text] [Related]
13. CompGO: an R package for comparing and visualizing Gene Ontology enrichment differences between DNA binding experiments. Waardenberg AJ; Basset SD; Bouveret R; Harvey RP BMC Bioinformatics; 2015 Sep; 16():275. PubMed ID: 26329719 [TBL] [Abstract][Full Text] [Related]
14. CMA: a comprehensive Bioconductor package for supervised classification with high dimensional data. Slawski M; Daumer M; Boulesteix AL BMC Bioinformatics; 2008 Oct; 9():439. PubMed ID: 18925941 [TBL] [Abstract][Full Text] [Related]
15. mAPKL: R/ Bioconductor package for detecting gene exemplars and revealing their characteristics. Sakellariou A; Spyrou G BMC Bioinformatics; 2015 Sep; 16(1):291. PubMed ID: 26374744 [TBL] [Abstract][Full Text] [Related]
16. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Love MI; Huber W; Anders S Genome Biol; 2014; 15(12):550. PubMed ID: 25516281 [TBL] [Abstract][Full Text] [Related]
17. MHiC, an integrated user-friendly tool for the identification and visualization of significant interactions in Hi-C data. Khakmardan S; Rezvani M; Pouyan AA; Fateh M; Alinejad-Rokny H BMC Genomics; 2020 Mar; 21(1):225. PubMed ID: 32164554 [TBL] [Abstract][Full Text] [Related]
18. diffHic: a Bioconductor package to detect differential genomic interactions in Hi-C data. Lun AT; Smyth GK BMC Bioinformatics; 2015 Aug; 16():258. PubMed ID: 26283514 [TBL] [Abstract][Full Text] [Related]
19. NuChart: an R package to study gene spatial neighbourhoods with multi-omics annotations. Merelli I; LiĆ² P; Milanesi L PLoS One; 2013; 8(9):e75146. PubMed ID: 24069388 [TBL] [Abstract][Full Text] [Related]
20. R/EBcoexpress: an empirical Bayesian framework for discovering differential co-expression. Dawson JA; Ye S; Kendziorski C Bioinformatics; 2012 Jul; 28(14):1939-40. PubMed ID: 22595207 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]