These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
159 related articles for article (PubMed ID: 28380048)
1. A study of the transferability of influenza case detection systems between two large healthcare systems. Ye Y; Wagner MM; Cooper GF; Ferraro JP; Su H; Gesteland PH; Haug PJ; Millett NE; Aronis JM; Nowalk AJ; Ruiz VM; López Pineda A; Shi L; Van Bree R; Ginter T; Tsui F PLoS One; 2017; 12(4):e0174970. PubMed ID: 28380048 [TBL] [Abstract][Full Text] [Related]
2. The effects of natural language processing on cross-institutional portability of influenza case detection for disease surveillance. Ferraro JP; Ye Y; Gesteland PH; Haug PJ; Tsui FR; Cooper GF; Van Bree R; Ginter T; Nowalk AJ; Wagner M Appl Clin Inform; 2017 May; 8(2):560-580. PubMed ID: 28561130 [TBL] [Abstract][Full Text] [Related]
3. Automated influenza case detection for public health surveillance and clinical diagnosis using dynamic influenza prevalence method. Tsui F; Ye Y; Ruiz V; Cooper GF; Wagner MM J Public Health (Oxf); 2018 Dec; 40(4):878-885. PubMed ID: 29059331 [TBL] [Abstract][Full Text] [Related]
4. Influenza detection from emergency department reports using natural language processing and Bayesian network classifiers. Ye Y; Tsui FR; Wagner M; Espino JU; Li Q J Am Med Inform Assoc; 2014; 21(5):815-23. PubMed ID: 24406261 [TBL] [Abstract][Full Text] [Related]
5. A comparison of rule-based and machine learning approaches for classifying patient portal messages. Cronin RM; Fabbri D; Denny JC; Rosenbloom ST; Jackson GP Int J Med Inform; 2017 Sep; 105():110-120. PubMed ID: 28750904 [TBL] [Abstract][Full Text] [Related]
6. Comparison of machine learning classifiers for influenza detection from emergency department free-text reports. López Pineda A; Ye Y; Visweswaran S; Cooper GF; Wagner MM; Tsui FR J Biomed Inform; 2015 Dec; 58():60-69. PubMed ID: 26385375 [TBL] [Abstract][Full Text] [Related]
7. Performance of a Machine Learning Classifier of Knee MRI Reports in Two Large Academic Radiology Practices: A Tool to Estimate Diagnostic Yield. Hassanpour S; Langlotz CP; Amrhein TJ; Befera NT; Lungren MP AJR Am J Roentgenol; 2017 Apr; 208(4):750-753. PubMed ID: 28140627 [TBL] [Abstract][Full Text] [Related]
8. Prospective validation of a machine learning model that uses provider notes to identify candidates for resective epilepsy surgery. Wissel BD; Greiner HM; Glauser TA; Holland-Bouley KD; Mangano FT; Santel D; Faist R; Zhang N; Pestian JP; Szczesniak RD; Dexheimer JW Epilepsia; 2020 Jan; 61(1):39-48. PubMed ID: 31784992 [TBL] [Abstract][Full Text] [Related]
9. Automated Extraction of Diagnostic Criteria From Electronic Health Records for Autism Spectrum Disorders: Development, Evaluation, and Application. Leroy G; Gu Y; Pettygrove S; Galindo MK; Arora A; Kurzius-Spencer M J Med Internet Res; 2018 Nov; 20(11):e10497. PubMed ID: 30404767 [TBL] [Abstract][Full Text] [Related]
10. Identifying signs and symptoms of urinary tract infection from emergency department clinical notes using large language models. Iscoe M; Socrates V; Gilson A; Chi L; Li H; Huang T; Kearns T; Perkins R; Khandjian L; Taylor RA Acad Emerg Med; 2024 Jun; 31(6):599-610. PubMed ID: 38567658 [TBL] [Abstract][Full Text] [Related]
11. Clinical predictors for laboratory-confirmed influenza infections: exploring case definitions for influenza-like illness. Shah SC; Rumoro DP; Hallock MM; Trenholme GM; Gibbs GS; Silva JC; Waddell MJ Infect Control Hosp Epidemiol; 2015 Mar; 36(3):241-8. PubMed ID: 25695163 [TBL] [Abstract][Full Text] [Related]
13. Identification, management, and clinical characteristics of hospitalized patients with influenza-like illness during the 2009 H1N1 influenza pandemic, Cook County, Illinois. Metzger KE; Black SR; Jones RC; Nelson SR; Robicsek A; Trenholme GM; Lavin MA; Weber SG; Garcia-Houchins S; Landon E; Parada JP; Gerber SI Infect Control Hosp Epidemiol; 2011 Oct; 32(10):998-1002. PubMed ID: 21931250 [TBL] [Abstract][Full Text] [Related]
14. Building a Natural Language Processing Tool to Identify Patients With High Clinical Suspicion for Kawasaki Disease from Emergency Department Notes. Doan S; Maehara CK; Chaparro JD; Lu S; Liu R; Graham A; Berry E; Hsu CN; Kanegaye JT; Lloyd DD; Ohno-Machado L; Burns JC; Tremoulet AH; Acad Emerg Med; 2016 May; 23(5):628-36. PubMed ID: 26826020 [TBL] [Abstract][Full Text] [Related]
15. Artificial Intelligence Learning Semantics via External Resources for Classifying Diagnosis Codes in Discharge Notes. Lin C; Hsu CJ; Lou YS; Yeh SJ; Lee CC; Su SL; Chen HC J Med Internet Res; 2017 Nov; 19(11):e380. PubMed ID: 29109070 [TBL] [Abstract][Full Text] [Related]
16. Pediatric Injury Surveillance From Uncoded Emergency Department Admission Records in Italy: Machine Learning-Based Text-Mining Approach. Azzolina D; Bressan S; Lorenzoni G; Baldan GA; Bartolotta P; Scognamiglio F; Francavilla A; Lanera C; Da Dalt L; Gregori D JMIR Public Health Surveill; 2023 Jul; 9():e44467. PubMed ID: 37436799 [TBL] [Abstract][Full Text] [Related]
17. Scaling-up NLP Pipelines to Process Large Corpora of Clinical Notes. Divita G; Carter M; Redd A; Zeng Q; Gupta K; Trautner B; Samore M; Gundlapalli A Methods Inf Med; 2015; 54(6):548-52. PubMed ID: 26534722 [TBL] [Abstract][Full Text] [Related]
18. Development and Validation of a Natural Language Processing Tool to Identify Patients Treated for Pneumonia across VA Emergency Departments. Jones BE; South BR; Shao Y; Lu CC; Leng J; Sauer BC; Gundlapalli AV; Samore MH; Zeng Q Appl Clin Inform; 2018 Jan; 9(1):122-128. PubMed ID: 29466818 [TBL] [Abstract][Full Text] [Related]
19. Harnessing the Power of Machine Learning and Electronic Health Records to Support Child Abuse and Neglect Identification in Emergency Department Settings. Landau AY; Blanchard A; Kulkarni P; Althobaiti S; Idnay B; Patton DU; Cato K; Topaz M Stud Health Technol Inform; 2024 Aug; 316():1652-1656. PubMed ID: 39176527 [TBL] [Abstract][Full Text] [Related]
20. Prediction of In-hospital Mortality in Emergency Department Patients With Sepsis: A Local Big Data-Driven, Machine Learning Approach. Taylor RA; Pare JR; Venkatesh AK; Mowafi H; Melnick ER; Fleischman W; Hall MK Acad Emerg Med; 2016 Mar; 23(3):269-78. PubMed ID: 26679719 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]