These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 28380353)

  • 1. Interaction Dynamics Determine Signaling and Output Pathway Responses.
    Stojanovski K; Ferrar T; Benisty H; Uschner F; Delgado J; Jimenez J; Solé C; de Nadal E; Klipp E; Posas F; Serrano L; Kiel C
    Cell Rep; 2017 Apr; 19(1):136-149. PubMed ID: 28380353
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Robust network structure of the Sln1-Ypd1-Ssk1 three-component phospho-relay prevents unintended activation of the HOG MAPK pathway in Saccharomyces cerevisiae.
    Dexter JP; Xu P; Gunawardena J; McClean MN
    BMC Syst Biol; 2015 Mar; 9():17. PubMed ID: 25888817
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of osmolytes on the SLN1-YPD1-SSK1 phosphorelay system from Saccharomyces cerevisiae.
    Kaserer AO; Andi B; Cook PF; West AH
    Biochemistry; 2009 Aug; 48(33):8044-50. PubMed ID: 19618914
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Binding of the Extracellular Eight-Cysteine Motif of Opy2 to the Putative Osmosensor Msb2 Is Essential for Activation of the Yeast High-Osmolarity Glycerol Pathway.
    Yamamoto K; Tatebayashi K; Saito H
    Mol Cell Biol; 2016 Feb; 36(3):475-87. PubMed ID: 26598606
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sphingolipids regulate the yeast high-osmolarity glycerol response pathway.
    Tanigawa M; Kihara A; Terashima M; Takahara T; Maeda T
    Mol Cell Biol; 2012 Jul; 32(14):2861-70. PubMed ID: 22586268
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A docking site determining specificity of Pbs2 MAPKK for Ssk2/Ssk22 MAPKKKs in the yeast HOG pathway.
    Tatebayashi K; Takekawa M; Saito H
    EMBO J; 2003 Jul; 22(14):3624-34. PubMed ID: 12853477
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Yeast osmosensor Sln1 and plant cytokinin receptor Cre1 respond to changes in turgor pressure.
    Reiser V; Raitt DC; Saito H
    J Cell Biol; 2003 Jun; 161(6):1035-40. PubMed ID: 12821642
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Insights revealed by the co-crystal structure of the Saccharomyces cerevisiae histidine phosphotransfer protein Ypd1 and the receiver domain of its downstream response regulator Ssk1.
    Branscum KM; Menon SK; Foster CA; West AH
    Protein Sci; 2019 Dec; 28(12):2099-2111. PubMed ID: 31642125
    [TBL] [Abstract][Full Text] [Related]  

  • 9. When the stress of your environment makes you go HOG wild.
    Westfall PJ; Ballon DR; Thorner J
    Science; 2004 Nov; 306(5701):1511-2. PubMed ID: 15567851
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A model-based study delineating the roles of the two signaling branches of Saccharomyces cerevisiae, Sho1 and Sln1, during adaptation to osmotic stress.
    Parmar JH; Bhartiya S; Venkatesh KV
    Phys Biol; 2009 Aug; 6(3):036019. PubMed ID: 19657148
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Two activating phosphorylation sites of Pbs2 MAP2K in the yeast HOG pathway are differentially dephosphorylated by four PP2C phosphatases Ptc1-Ptc4.
    Tatebayashi K; Saito H
    J Biol Chem; 2023 Apr; 299(4):104569. PubMed ID: 36870684
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Activation of the HOG pathway upon cold stress in Saccharomyces cerevisiae.
    Hayashi M; Maeda T
    J Biochem; 2006 Apr; 139(4):797-803. PubMed ID: 16672281
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Adaptor functions of Cdc42, Ste50, and Sho1 in the yeast osmoregulatory HOG MAPK pathway.
    Tatebayashi K; Yamamoto K; Tanaka K; Tomida T; Maruoka T; Kasukawa E; Saito H
    EMBO J; 2006 Jul; 25(13):3033-44. PubMed ID: 16778768
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Calcofluor antifungal action depends on chitin and a functional high-osmolarity glycerol response (HOG) pathway: evidence for a physiological role of the Saccharomyces cerevisiae HOG pathway under noninducing conditions.
    García-Rodriguez LJ; Durán A; Roncero C
    J Bacteriol; 2000 May; 182(9):2428-37. PubMed ID: 10762242
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Yeast osmosensors Hkr1 and Msb2 activate the Hog1 MAPK cascade by different mechanisms.
    Tanaka K; Tatebayashi K; Nishimura A; Yamamoto K; Yang HY; Saito H
    Sci Signal; 2014 Feb; 7(314):ra21. PubMed ID: 24570489
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Phosphorelay signaling in yeast in response to changes in osmolarity.
    Santos JL; Shiozaki K
    Sci STKE; 2004 Dec; 2004(262):tr12. PubMed ID: 15585692
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Yeast go the whole HOG for the hyperosmotic response.
    O'Rourke SM; Herskowitz I; O'Shea EK
    Trends Genet; 2002 Aug; 18(8):405-12. PubMed ID: 12142009
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A downshift in temperature activates the high osmolarity glycerol (HOG) pathway, which determines freeze tolerance in Saccharomyces cerevisiae.
    Panadero J; Pallotti C; Rodríguez-Vargas S; Randez-Gil F; Prieto JA
    J Biol Chem; 2006 Feb; 281(8):4638-45. PubMed ID: 16371351
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cdc37p is required for stress-induced high-osmolarity glycerol and protein kinase C mitogen-activated protein kinase pathway functionality by interaction with Hog1p and Slt2p (Mpk1p).
    Hawle P; Horst D; Bebelman JP; Yang XX; Siderius M; van der Vies SM
    Eukaryot Cell; 2007 Mar; 6(3):521-32. PubMed ID: 17220467
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Kinetic studies of the yeast His-Asp phosphorelay signaling pathway.
    Kaserer AO; Andi B; Cook PF; West AH
    Methods Enzymol; 2010; 471():59-75. PubMed ID: 20946842
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.