BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 28380355)

  • 1. DGCR8 Mediates Repair of UV-Induced DNA Damage Independently of RNA Processing.
    Calses PC; Dhillon KK; Tucker N; Chi Y; Huang JW; Kawasumi M; Nghiem P; Wang Y; Clurman BE; Jacquemont C; Gafken PR; Sugasawa K; Saijo M; Taniguchi T
    Cell Rep; 2017 Apr; 19(1):162-174. PubMed ID: 28380355
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The kinase ABL phosphorylates the microprocessor subunit DGCR8 to stimulate primary microRNA processing in response to DNA damage.
    Tu CC; Zhong Y; Nguyen L; Tsai A; Sridevi P; Tarn WY; Wang JY
    Sci Signal; 2015 Jun; 8(383):ra64. PubMed ID: 26126715
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A heterotrimer model of the complete Microprocessor complex revealed by single-molecule subunit counting.
    Herbert KM; Sarkar SK; Mills M; Delgado De la Herran HC; Neuman KC; Steitz JA
    RNA; 2016 Feb; 22(2):175-83. PubMed ID: 26683315
    [TBL] [Abstract][Full Text] [Related]  

  • 4. MeCP2 suppresses nuclear microRNA processing and dendritic growth by regulating the DGCR8/Drosha complex.
    Cheng TL; Wang Z; Liao Q; Zhu Y; Zhou WH; Xu W; Qiu Z
    Dev Cell; 2014 Mar; 28(5):547-60. PubMed ID: 24636259
    [TBL] [Abstract][Full Text] [Related]  

  • 5. BRG1 and SMARCAL1 transcriptionally co-regulate DROSHA, DGCR8 and DICER in response to doxorubicin-induced DNA damage.
    Patne K; Rakesh R; Arya V; Chanana UB; Sethy R; Swer PB; Muthuswami R
    Biochim Biophys Acta Gene Regul Mech; 2017 Sep; 1860(9):936-951. PubMed ID: 28716689
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Differential ultraviolet-B-induced immunomodulation in XPA, XPC, and CSB DNA repair-deficient mice.
    Boonstra A; van Oudenaren A; Baert M; van Steeg H; Leenen PJ; van der Horst GT; Hoeijmakers JH; Savelkoul HF; Garssen J
    J Invest Dermatol; 2001 Jul; 117(1):141-6. PubMed ID: 11442761
    [TBL] [Abstract][Full Text] [Related]  

  • 7. CSB-Dependent Cyclin-Dependent Kinase 9 Degradation and RNA Polymerase II Phosphorylation during Transcription-Coupled Repair.
    Donnio LM; Lagarou A; Sueur G; Mari PO; Giglia-Mari G
    Mol Cell Biol; 2019 Mar; 39(6):. PubMed ID: 30602496
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Functional Anatomy of the Human Microprocessor.
    Nguyen TA; Jo MH; Choi YG; Park J; Kwon SC; Hohng S; Kim VN; Woo JS
    Cell; 2015 Jun; 161(6):1374-87. PubMed ID: 26027739
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Heme enables proper positioning of Drosha and DGCR8 on primary microRNAs.
    Partin AC; Ngo TD; Herrell E; Jeong BC; Hon G; Nam Y
    Nat Commun; 2017 Nov; 8(1):1737. PubMed ID: 29170488
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Molecular basis for the recognition of primary microRNAs by the Drosha-DGCR8 complex.
    Han J; Lee Y; Yeom KH; Nam JW; Heo I; Rhee JK; Sohn SY; Cho Y; Zhang BT; Kim VN
    Cell; 2006 Jun; 125(5):887-901. PubMed ID: 16751099
    [TBL] [Abstract][Full Text] [Related]  

  • 11. DNA damage response and transcription.
    Lagerwerf S; Vrouwe MG; Overmeer RM; Fousteri MI; Mullenders LH
    DNA Repair (Amst); 2011 Jul; 10(7):743-50. PubMed ID: 21622031
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Upregulation of microRNA processing enzymes Drosha and Dicer in gestational diabetes mellitus.
    Rahimi G; Jafari N; Khodabakhsh M; Shirzad Z; Dogaheh HP
    Gynecol Endocrinol; 2015 Feb; 31(2):156-9. PubMed ID: 25295740
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Posttranscriptional crossregulation between Drosha and DGCR8.
    Han J; Pedersen JS; Kwon SC; Belair CD; Kim YK; Yeom KH; Yang WY; Haussler D; Blelloch R; Kim VN
    Cell; 2009 Jan; 136(1):75-84. PubMed ID: 19135890
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterization of DGCR8/Pasha, the essential cofactor for Drosha in primary miRNA processing.
    Yeom KH; Lee Y; Han J; Suh MR; Kim VN
    Nucleic Acids Res; 2006; 34(16):4622-9. PubMed ID: 16963499
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cobalt(III) Protoporphyrin Activates the DGCR8 Protein and Can Compensate microRNA Processing Deficiency.
    Barr I; Weitz SH; Atkin T; Hsu P; Karayiorgou M; Gogos JA; Weiss S; Guo F
    Chem Biol; 2015 Jun; 22(6):793-802. PubMed ID: 26091172
    [TBL] [Abstract][Full Text] [Related]  

  • 16. DROSHA targets its own transcript to modulate alternative splicing.
    Lee D; Nam JW; Shin C
    RNA; 2017 Jul; 23(7):1035-1047. PubMed ID: 28400409
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A novel hydrogen peroxide-induced phosphorylation and ubiquitination pathway leading to RNA polymerase II proteolysis.
    Inukai N; Yamaguchi Y; Kuraoka I; Yamada T; Kamijo S; Kato J; Tanaka K; Handa H
    J Biol Chem; 2004 Feb; 279(9):8190-5. PubMed ID: 14662762
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Next-generation sequencing reveals two populations of damage-induced small RNAs at endogenous DNA double-strand breaks.
    Bonath F; Domingo-Prim J; Tarbier M; Friedländer MR; Visa N
    Nucleic Acids Res; 2018 Dec; 46(22):11869-11882. PubMed ID: 30418607
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The Cockayne syndrome B protein, involved in transcription-coupled DNA repair, resides in an RNA polymerase II-containing complex.
    van Gool AJ; Citterio E; Rademakers S; van Os R; Vermeulen W; Constantinou A; Egly JM; Bootsma D; Hoeijmakers JH
    EMBO J; 1997 Oct; 16(19):5955-65. PubMed ID: 9312053
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Phosphorylation of DGCR8 increases its intracellular stability and induces a progrowth miRNA profile.
    Herbert KM; Pimienta G; DeGregorio SJ; Alexandrov A; Steitz JA
    Cell Rep; 2013 Nov; 5(4):1070-81. PubMed ID: 24239349
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.