These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 28380522)

  • 1. Optimising the proportion of selection candidates measured for feed intake for a beef cattle breeding objective that includes methane emissions.
    Cottle DJ; van der Werf JH
    J Anim Sci; 2017 Mar; 95(3):1030-1041. PubMed ID: 28380522
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Benefits of including methane measurements in selection strategies.
    Robinson DL; Oddy VH
    J Anim Sci; 2016 Sep; 94(9):3624-3635. PubMed ID: 27898913
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Genetic parameters for predicted methane production and potential for reducing enteric emissions through genomic selection.
    Haas Yd; Windig JJ; Calus MP; Dijkstra J; Haan Md; Bannink A; Veerkamp RF
    J Dairy Sci; 2011 Dec; 94(12):6122-34. PubMed ID: 22118100
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mitigation of greenhouse gases in dairy cattle via genetic selection: 2. Incorporating methane emissions into the breeding goal.
    González-Recio O; López-Paredes J; Ouatahar L; Charfeddine N; Ugarte E; Alenda R; Jiménez-Montero JA
    J Dairy Sci; 2020 Aug; 103(8):7210-7221. PubMed ID: 32475662
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Estimating daily methane production in individual cattle with irregular feed intake patterns from short-term methane emission measurements.
    Cottle DJ; Velazco J; Hegarty RS; Mayer DG
    Animal; 2015 Dec; 9(12):1949-57. PubMed ID: 26301870
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Genomic heritabilities and genomic estimated breeding values for methane traits in Angus cattle.
    Hayes BJ; Donoghue KA; Reich CM; Mason BA; Bird-Gardiner T; Herd RM; Arthur PF
    J Anim Sci; 2016 Mar; 94(3):902-8. PubMed ID: 27065252
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Expected consequences of including methane footprint into the breeding goals in beef cattle. A Spanish Blonde d'Aquitaine population as a case of study.
    López-Paredes J; Alenda R; González-Recio O
    J Anim Breed Genet; 2018 Oct; 135(5):366-377. PubMed ID: 30033566
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Methods and consequences of including reduction in greenhouse gas emission in beef cattle multiple-trait selection.
    Barwick SA; Henzell AL; Herd RM; Walmsley BJ; Arthur PF
    Genet Sel Evol; 2019 Apr; 51(1):18. PubMed ID: 31035930
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Genomic selection for feed efficiency in dairy cattle.
    Pryce JE; Wales WJ; de Haas Y; Veerkamp RF; Hayes BJ
    Animal; 2014 Jan; 8(1):1-10. PubMed ID: 24128704
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Impact of including growth, carcass and feed efficiency traits in the breeding goal for combined milk and beef production systems.
    Hietala P; Juga J
    Animal; 2017 Apr; 11(4):564-573. PubMed ID: 27608523
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Optimization of a genomic breeding program for a moderately sized dairy cattle population.
    Reiner-Benaim A; Ezra E; Weller JI
    J Dairy Sci; 2017 Apr; 100(4):2892-2904. PubMed ID: 28189326
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparison of economic returns among genetic evaluation strategies in a 2-tiered Charolais-sired beef cattle production system.
    Buchanan JW; MacNeil MD; Raymond RC; Nilles AR; Van Eenennaam AL
    J Anim Sci; 2018 Sep; 96(10):4076-4086. PubMed ID: 30053023
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Genetic and phenotypic parameter estimates for feed intake and other traits in growing beef cattle, and opportunities for selection.
    Rolfe KM; Snelling WM; Nielsen MK; Freetly HC; Ferrell CL; Jenkins TG
    J Anim Sci; 2011 Nov; 89(11):3452-9. PubMed ID: 21622877
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Genetic change results from selection on an economic breeding objective in beef cattle.
    Enns RM; Nicoll GB
    J Anim Sci; 2008 Dec; 86(12):3348-57. PubMed ID: 18469047
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of breed composition on phenotypic residual feed intake and growth in Angus, Brahman, and Angus x Brahman crossbred cattle.
    Elzo MA; Riley DG; Hansen GR; Johnson DD; Myer RO; Coleman SW; Chase CC; Wasdin JG; Driver JD
    J Anim Sci; 2009 Dec; 87(12):3877-86. PubMed ID: 19684277
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bayesian analysis of the effect of selection for residual feed intake on growth and feed intake curves in Yorkshire swine.
    Cai W; Kaiser MS; Dekkers JC
    J Anim Sci; 2012 Jan; 90(1):127-41. PubMed ID: 21873534
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A prototype national cattle evaluation for feed intake and efficiency of Angus cattle.
    MacNeil MD; Lopez-Villalobos N; Northcutt SL
    J Anim Sci; 2011 Dec; 89(12):3917-23. PubMed ID: 21764839
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Prediction of effects of beef selection indexes on greenhouse gas emissions.
    Quinton CD; Hely FS; Amer PR; Byrne TJ; Cromie AR
    Animal; 2018 May; 12(5):889-897. PubMed ID: 28988566
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Genomewide association study of methane emissions in Angus beef cattle with validation in dairy cattle.
    Manzanilla-Pech CI; De Haas Y; Hayes BJ; Veerkamp RF; Khansefid M; Donoghue KA; Arthur PF; Pryce JE
    J Anim Sci; 2016 Oct; 94(10):4151-4166. PubMed ID: 27898855
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of direct and indirect selection criteria for efficiency of gain on profitability of Japanese Black cattle selection strategies.
    Kahi AK; Hirooka H
    J Anim Sci; 2007 Oct; 85(10):2401-12. PubMed ID: 17565064
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.