These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 28380790)

  • 1. Development of a solid-state sodium Doppler lidar using an all-fiber-coupled injection seeding unit for simultaneous temperature and wind measurements in the mesopause region.
    Xia Y; Du L; Cheng X; Li F; Wang J; Wang Z; Yang Y; Lin X; Xun Y; Gong S; Yang G
    Opt Express; 2017 Mar; 25(5):5264-5278. PubMed ID: 28380790
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sodium temperature lidar based on injection seeded Nd:YAG pulse lasers using a sum-frequency generation technique.
    Kawahara TD; Kitahara T; Kobayashi F; Saito Y; Nomura A
    Opt Express; 2011 Feb; 19(4):3553-61. PubMed ID: 21369179
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Solid-state 589 nm seed laser based on Raman fiber amplifier for sodium wind/temperature lidar in Tibet, China.
    Yang Y; Yang Y; Xia Y; Lin X; Zhang L; Jiang H; Cheng X; Liu L; Ji K; Li F
    Opt Express; 2018 Jun; 26(13):16226-16235. PubMed ID: 30119457
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Frequency and timing stability of an airborne injection-seeded Nd:YAG laser system for direct-detection wind lidar.
    Lemmerz C; Lux O; Reitebuch O; Witschas B; Wührer C
    Appl Opt; 2017 Nov; 56(32):9057-9068. PubMed ID: 29131193
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Narrowband sodium lidar for the measurements of mesopause region temperature and wind.
    Li T; Fang X; Liu W; Gu SY; Dou X
    Appl Opt; 2012 Aug; 51(22):5401-11. PubMed ID: 22859028
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sodium temperature/wind lidar based on laser-diode-pumped Nd:YAG lasers deployed at Tromsø, Norway (69.6°N, 19.2°E).
    Kawahara TD; Nozawa S; Saito N; Kawabata T; Tsuda TT; Wada S
    Opt Express; 2017 Jun; 25(12):A491-A501. PubMed ID: 28788880
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mesopause-region temperature and wind measurements with pseudorandom modulation continuous-wave (PMCW) lidar at 589 nm.
    She CY; Abo M; Yue J; Williams BP; Nagasawa C; Nakamura T
    Appl Opt; 2011 Jun; 50(18):2916-26. PubMed ID: 21691356
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Wind-bias correction method for narrowband sodium Doppler lidars using iodine absorption spectroscopy.
    Yuan T; Yue J; She CY; Sherman JP; White MA; Harrell SD; Acott PE; Krueger DA
    Appl Opt; 2009 Jul; 48(20):3988-93. PubMed ID: 19593351
    [TBL] [Abstract][Full Text] [Related]  

  • 9. 1645 nm coherent Doppler wind lidar with a single-frequency Er:YAG laser.
    Wang K; Gao C; Lin Z; Wang Q; Gao M; Huang S; Chen C
    Opt Express; 2020 May; 28(10):14694-14704. PubMed ID: 32403505
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Pseudo-random modulation continuous-wave lidar for the measurements of mesopause region sodium density.
    Li F; Li T; Fang X; Tian B; Dou X
    Opt Express; 2021 Jan; 29(2):1932-1944. PubMed ID: 33726397
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Retrieving mesopause temperature and line-of-sight wind from full-diurnal-cycle Na lidar observations.
    Krueger DA; She CY; Yuan T
    Appl Opt; 2015 Nov; 54(32):9469-89. PubMed ID: 26560775
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mid-altitude wind measurements with mobile Rayleigh Doppler lidar incorporating system-level optical frequency control method.
    Xia H; Dou X; Sun D; Shu Z; Xue X; Han Y; Hu D; Han Y; Cheng T
    Opt Express; 2012 Jul; 20(14):15286-300. PubMed ID: 22772226
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Doppler lidar atmospheric wind sensor: reevaluation of a 355-nm incoherent Doppler lidar.
    Rees D; McDermid IS
    Appl Opt; 1990 Oct; 29(28):4133-44. PubMed ID: 20577356
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mobile Rayleigh Doppler lidar for wind and temperature measurements in the stratosphere and lower mesosphere.
    Dou X; Han Y; Sun D; Xia H; Shu Z; Zhao R; Shangguan M; Guo J
    Opt Express; 2014 Aug; 22 Suppl 5():A1203-21. PubMed ID: 25322175
    [TBL] [Abstract][Full Text] [Related]  

  • 15. 2  μm Doppler wind lidar with a Tm:fiber-laser-pumped Ho:YLF laser.
    Mizutani K; Ishii S; Aoki M; Iwai H; Otsuka R; Fukuoka H; Isikawa T; Sato A
    Opt Lett; 2018 Jan; 43(2):202-205. PubMed ID: 29328238
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Continuous-wave sodium D2 resonance radiation generated in single-pass sum-frequency generation with periodically poled lithium niobate.
    Yue J; She CY; Williams BP; Vance JD; Acott PE; Kawahara TD
    Opt Lett; 2009 Apr; 34(7):1093-5. PubMed ID: 19340230
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sum frequency generation of sodium resonance radiation.
    Jeys TH; Brailove AA; Mooradian A
    Appl Opt; 1989 Jul; 28(13):2588-91. PubMed ID: 20555564
    [TBL] [Abstract][Full Text] [Related]  

  • 18. 300-mW narrow-linewidth deep-ultraviolet light generation at 193 nm by frequency mixing between Yb-hybrid and Er-fiber lasers.
    Xuan H; Zhao Z; Igarashi H; Ito S; Kakizaki K; Kobayashi Y
    Opt Express; 2015 Apr; 23(8):10564-72. PubMed ID: 25969096
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ultraviolet high-spectral-resolution Doppler lidar for measuring wind field and aerosol optical properties.
    Imaki M; Kobayashi T
    Appl Opt; 2005 Oct; 44(28):6023-30. PubMed ID: 16231810
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Single-frequency, Q-switched Ho:YAG laser at room temperature injection-seeded by two F-P etalons-restricted Tm, Ho:YAG laser.
    Dai TY; Ju YL; Yao BQ; Shen YJ; Wang W; Wang YZ
    Opt Lett; 2012 Jun; 37(11):1850-2. PubMed ID: 22660050
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.