These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

83 related articles for article (PubMed ID: 28380818)

  • 1. Near- and far-field investigation of dark and bright higher order resonances in square loop elements at mid-infrared wavelengths.
    Tucker E; D'Archangel J; Boreman G
    Opt Express; 2017 Mar; 25(5):5594-5608. PubMed ID: 28380818
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Near-field investigation of the effect of the array edge on the resonance of loop frequency selective surface elements at mid-infrared wavelengths.
    Tucker E; D' Archangel J; Raschke MB; Boreman G
    Opt Express; 2015 May; 23(9):10974-85. PubMed ID: 25969192
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Array truncation effects in infrared frequency selective surfaces.
    D' Archangel J; Tucker E; Raschke MB; Boreman G
    Opt Express; 2014 Jun; 22(13):16645-59. PubMed ID: 24977912
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Near-field spectral properties of coupled plasmonic nanoparticle arrays.
    Yu H; Sun Q; Yang J; Ueno K; Oshikiri T; Kubo A; Matsuo Y; Gong Q; Misawa H
    Opt Express; 2017 Mar; 25(6):6883-6894. PubMed ID: 28381030
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Selective excitation of bright and dark plasmonic resonances of single gold nanorods.
    Demichel O; Petit M; Colas des Francs G; Bouhelier A; Hertz E; Billard F; de Fornel F; Cluzel B
    Opt Express; 2014 Jun; 22(12):15088-96. PubMed ID: 24977601
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Near-ideal optical metamaterial absorbers with super-octave bandwidth.
    Bossard JA; Lin L; Yun S; Liu L; Werner DH; Mayer TS
    ACS Nano; 2014 Feb; 8(2):1517-24. PubMed ID: 24472069
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Near- and far-field spectroscopic imaging investigation of resonant square-loop infrared metasurfaces.
    D' Archangel J; Tucker E; Kinzel E; Muller EA; Bechtel HA; Martin MC; Raschke MB; Boreman G
    Opt Express; 2013 Jul; 21(14):17150-60. PubMed ID: 23938562
    [TBL] [Abstract][Full Text] [Related]  

  • 8. On the reinterpretation of resonances in split-ring-resonators at normal incidence.
    Rockstuhl C; Lederer F; Etrich C; Zentgraf T; Kuhl J; Giessen H
    Opt Express; 2006 Sep; 14(19):8827-36. PubMed ID: 19529264
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Plasmon modes in single gold nanodiscs.
    Imura K; Ueno K; Misawa H; Okamoto H; McArthur D; Hourahine B; Papoff F
    Opt Express; 2014 May; 22(10):12189-99. PubMed ID: 24921339
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Near-field resonance at far-field-induced transparency in diffractive arrays of plasmonic nanorods.
    Rodriguez SR; Janssen OT; Lozano G; Omari A; Hens Z; Rivas JG
    Opt Lett; 2013 Apr; 38(8):1238-40. PubMed ID: 23595444
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Analysis of the spectral behavior of localized plasmon resonances in the near- and far-field regimes.
    Moreno F; Albella P; Nieto-Vesperinas M
    Langmuir; 2013 Jun; 29(22):6715-21. PubMed ID: 23697884
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Plasmonic resonances in diffractive arrays of gold nanoantennas: near and far field effects.
    Nikitin AG; Kabashin AV; Dallaporta H
    Opt Express; 2012 Dec; 20(25):27941-52. PubMed ID: 23262740
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Large spectral extinction due to overlap of dipolar and quadrupolar plasmonic modes of metallic nanoparticles in arrays.
    Burrows CP; Barnes WL
    Opt Express; 2010 Feb; 18(3):3187-98. PubMed ID: 20174158
    [TBL] [Abstract][Full Text] [Related]  

  • 14. From Dark to Bright: First-Order Perturbation Theory with Analytical Mode Normalization for Plasmonic Nanoantenna Arrays Applied to Refractive Index Sensing.
    Weiss T; Mesch M; Schäferling M; Giessen H; Langbein W; Muljarov EA
    Phys Rev Lett; 2016 Jun; 116(23):237401. PubMed ID: 27341256
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Excitation of dark plasmonic cavity modes via nonlinearly induced dipoles: applications to near-infrared plasmonic sensing.
    Biris CG; Panoiu NC
    Nanotechnology; 2011 Jun; 22(23):235502. PubMed ID: 21474872
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mode-specific study of nanoparticle-mediated optical interactions in an absorber/metal thin film system.
    Yu B; Woo J; Kong M; O'Carroll DM
    Nanoscale; 2015 Aug; 7(31):13196-206. PubMed ID: 26098863
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Investigation on the second part of the electromagnetic SERS enhancement and resulting fabrication strategies of anisotropic plasmonic arrays.
    Cialla D; Petschulat J; Hübner U; Schneidewind H; Zeisberger M; Mattheis R; Pertsch T; Schmitt M; Möller R; Popp J
    Chemphyschem; 2010 Jun; 11(9):1918-24. PubMed ID: 20401896
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Multiple surface plasmon resonances and near-infrared field enhancement of gold nanowells.
    Li K; Clime L; Tay L; Cui B; Geissler M; Veres T
    Anal Chem; 2008 Jul; 80(13):4945-50. PubMed ID: 18507399
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Polarization-Independent Multiple Fano Resonances in Plasmonic Nonamers for Multimode-Matching Enhanced Multiband Second-Harmonic Generation.
    Liu SD; Leong ES; Li GC; Hou Y; Deng J; Teng JH; Ong HC; Lei DY
    ACS Nano; 2016 Jan; 10(1):1442-53. PubMed ID: 26727133
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Double Fano resonances due to interplay of electric and magnetic plasmon modes in planar plasmonic structure with high sensing sensitivity.
    Wang J; Fan C; He J; Ding P; Liang E; Xue Q
    Opt Express; 2013 Jan; 21(2):2236-44. PubMed ID: 23389204
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.