These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

83 related articles for article (PubMed ID: 28380825)

  • 1. Defining regimes and analytical expressions for fluence curves in pulsed laser heating of aerosolized nanoparticles.
    Sipkens TA; Daun KJ
    Opt Express; 2017 Mar; 25(5):5684-5696. PubMed ID: 28380825
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A double pulse LII experiment on carbon nanoparticles: insight into optical properties.
    Migliorini F; Belmuso S; Ciniglia D; Dondè R; De Iuliis S
    Phys Chem Chem Phys; 2022 Aug; 24(33):19837-19843. PubMed ID: 35946946
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Laser-induced incandescence: excitation intensity.
    Vander Wal RL; Jensen KA
    Appl Opt; 1998 Mar; 37(9):1607-16. PubMed ID: 18268755
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Assessment of soot particle vaporization effects during laser-induced incandescence with time-resolved light scattering.
    Yoder GD; Diwakar PK; Hahn DW
    Appl Opt; 2005 Jul; 44(20):4211-9. PubMed ID: 16045207
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Time-Resolved Laser-Induced Incandescence Measurements on Aerosolized Nickel Nanoparticles.
    Robinson-Enebeli S; Talebi-Moghaddam S; Daun KJ
    J Phys Chem A; 2021 Jul; 125(28):6273-6285. PubMed ID: 34240871
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Determination of primary particle size distributions from time-resolved laser-induced incandescence measurements.
    Dankers S; Leipertz A
    Appl Opt; 2004 Jun; 43(18):3726-31. PubMed ID: 15218614
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Time-resolved laser-induced incandescence and laser elastic-scattering measurements in a propane diffusion flame.
    Witze PO; Hochgreb S; Kayes D; Michelsen HA; Shaddix CR
    Appl Opt; 2001 May; 40(15):2443-52. PubMed ID: 18357253
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Laser-induced incandescence for soot diagnostics at high pressures.
    Hofmann M; Bessler WG; Schulz C; Jander H
    Appl Opt; 2003 Apr; 42(12):2052-62. PubMed ID: 12716145
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Two-color laser-induced incandescence (2C-LII) technique for absolute soot volume fraction measurements in flames.
    De Iuliis S; Cignoli F; Zizak G
    Appl Opt; 2005 Dec; 44(34):7414-23. PubMed ID: 16353814
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Laser-induced incandescence: detection issues.
    Vander Wal RL
    Appl Opt; 1996 Nov; 35(33):6548-59. PubMed ID: 21127679
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Analysis of the Influence of the Conduction Sub-Model Formulation on the Modeling of Laser-Induced Incandescence of Diesel Soot Aggregates.
    Menanteau S; Lemaire R
    Entropy (Basel); 2019 Dec; 22(1):. PubMed ID: 33285795
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Laser-induced incandescence applied to metal nanostructures.
    Vander Wal RL; Ticich TM; West JR
    Appl Opt; 1999 Sep; 38(27):5867-79. PubMed ID: 18324102
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Performance of photomultipliers in the context of laser-induced incandescence.
    Mansmann R; Dreier T; Schulz C
    Appl Opt; 2017 Oct; 56(28):7849-7860. PubMed ID: 29047769
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Application of laser-induced incandescence to suspended carbon black particles.
    Sommer R; Leipertz A
    Opt Lett; 2007 Jul; 32(13):1947-9. PubMed ID: 17603623
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Spectroscopic study of laser-induced phase transition of gold nanoparticles on nanosecond time scales and longer.
    Inasawa S; Sugiyama M; Noda S; Yamaguchi Y
    J Phys Chem B; 2006 Feb; 110(7):3114-9. PubMed ID: 16494317
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Pulse-Width Dependence of the Cooling Effect on Sub-Micrometer ZnO Spherical Particle Formation by Pulsed-Laser Melting in a Liquid.
    Sakaki S; Ikenoue H; Tsuji T; Ishikawa Y; Koshizaki N
    Chemphyschem; 2017 May; 18(9):1101-1107. PubMed ID: 28052480
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Simultaneous determination of primary particle size distribution and thermal accommodation coefficient of soot aggregates using low-fluence LII.
    Zhang JY; Qi H; Shi JW; Gao BH; Ren YT
    Opt Express; 2020 Dec; 28(25):37249-37264. PubMed ID: 33379563
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Application of laser-induced incandescence to the detection of carbon nanotubes and carbon nanofibers.
    Vander Wal RL; Berger GM; Ticich TM; Patel PD
    Appl Opt; 2002 Sep; 41(27):5678-90. PubMed ID: 12269569
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In-flow optical characterization of flame-generated carbon nanoparticles sampled from a premixed flame.
    Migliorini F; Belmuso S; Maffi S; Dondè R; De Iuliis S
    Phys Chem Chem Phys; 2021 Jul; 23(29):15702-15712. PubMed ID: 34278406
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Photoinduced heating of nanoparticle arrays.
    Baffou G; Berto P; Bermúdez Ureña E; Quidant R; Monneret S; Polleux J; Rigneault H
    ACS Nano; 2013 Aug; 7(8):6478-88. PubMed ID: 23895209
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.