These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

189 related articles for article (PubMed ID: 28380841)

  • 41. A Metamaterials-Based Absorber Used for Switch Applications with Dynamically Variable Bandwidth in Terahertz Regime.
    Liu Y; Hu L
    Materials (Basel); 2024 Jul; 17(14):. PubMed ID: 39063863
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Ultra-thin polarization independent broadband terahertz metamaterial absorber.
    Gandhi C; Babu PR; Senthilnathan K
    Front Optoelectron; 2021 Sep; 14(3):288-297. PubMed ID: 36637732
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Dynamic Modulation of THz Absorption Frequency, Bandwidth, and Amplitude via Strontium Titanate and Graphene.
    Wu T; Wang G; Jia Y; Shao Y; Gao Y; Gao Y
    Nanomaterials (Basel); 2022 Apr; 12(8):. PubMed ID: 35458063
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Broadband terahertz absorber with a flexible, reconfigurable performance based on hybrid-patterned vanadium dioxide metasurfaces.
    Huang J; Li J; Yang Y; Li J; Li J; Zhang Y; Yao J
    Opt Express; 2020 Jun; 28(12):17832-17840. PubMed ID: 32679986
    [TBL] [Abstract][Full Text] [Related]  

  • 45. A switchable terahertz device combining ultra-wideband absorption and ultra-wideband complete reflection.
    Zheng Z; Zheng Y; Luo Y; Yi Z; Zhang J; Liu Z; Yang W; Yu Y; Wu X; Wu P
    Phys Chem Chem Phys; 2022 Jan; 24(4):2527-2533. PubMed ID: 35023523
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Switchable Terahertz Absorber from Single Broadband to Dual Broadband Based on Graphene and Vanadium Dioxide.
    Wang G; Wu T; Jia Y; Gao Y; Gao Y
    Nanomaterials (Basel); 2022 Jun; 12(13):. PubMed ID: 35808007
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Switchable terahertz metamaterial absorber with broadband absorption and multiband absorption.
    Zhang M; Song Z
    Opt Express; 2021 Jul; 29(14):21551-21561. PubMed ID: 34265940
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Frequency-Reconfigurable Wide-Angle Terahertz Absorbers Using Single- and Double-Layer Decussate Graphene Ribbon Arrays.
    Ye L; Zeng F; Zhang Y; Xu X; Yang X; Liu QH
    Nanomaterials (Basel); 2018 Oct; 8(10):. PubMed ID: 30322199
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Design of a Broadband Tunable Terahertz Metamaterial Absorber Based on Complementary Structural Graphene.
    Huang ML; Cheng YZ; Cheng ZZ; Chen HR; Mao XS; Gong RZ
    Materials (Basel); 2018 Mar; 11(4):. PubMed ID: 29614736
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Dual-Frequency Polarized Reconfigurable Terahertz Antenna Based on Graphene Metasurface and TOPAS.
    Zhang J; Tao S; Yan X; Zhang X; Guo J; Wen Z
    Micromachines (Basel); 2021 Sep; 12(9):. PubMed ID: 34577731
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Tunable broadband all-silicon terahertz absorber based on a simple metamaterial structure.
    Lang T; Shen T; Wang G; Shen C
    Appl Opt; 2020 Jul; 59(21):6265-6270. PubMed ID: 32749287
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Tunable Dual-Broadband Terahertz Absorber with Vanadium Dioxide Metamaterial.
    Feng H; Zhang Z; Zhang J; Fang D; Wang J; Liu C; Wu T; Wang G; Wang L; Ran L; Gao Y
    Nanomaterials (Basel); 2022 May; 12(10):. PubMed ID: 35630953
    [TBL] [Abstract][Full Text] [Related]  

  • 53. A tunable broadband terahertz MoS
    Cai F; Kou Z; Deng G
    Phys Chem Chem Phys; 2023 Nov; 25(45):30858-30866. PubMed ID: 37937513
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Multifunctional and switchable metamaterial for terahertz polarization modulation in the reflection mode.
    Jalal A; Khan MI; Qasim M; Hu B
    J Opt Soc Am A Opt Image Sci Vis; 2023 Jun; 40(6):1183-1190. PubMed ID: 37706771
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Switchable broadband and wide-angular terahertz asymmetric transmission based on a hybrid metal-VO
    Dong X; Luo X; Zhou Y; Lu Y; Hu F; Xu X; Li G
    Opt Express; 2020 Oct; 28(21):30675-30685. PubMed ID: 33115063
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Hybridization-induced broadband terahertz wave absorption with graphene metasurfaces.
    Mou N; Sun S; Dong H; Dong S; He Q; Zhou L; Zhang L
    Opt Express; 2018 Apr; 26(9):11728-11736. PubMed ID: 29716091
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Section 1Tunable broadband terahertz absorbers based on multiple layers of graphene ribbons.
    Chen D; Yang J; Zhang J; Huang J; Zhang Z
    Sci Rep; 2017 Nov; 7(1):15836. PubMed ID: 29158569
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Multilayer graphene-enabled structure based on Salisbury shielding effect for high-performance terahertz absorption.
    Niu Y; Bi K; Li Q; Bi X; Zhou S; Fu W; Zhang S; Han S; Mu J; Geng W; Mei L; Chou X
    Opt Express; 2023 Mar; 31(7):11547-11556. PubMed ID: 37155787
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Switchable multifunctional terahertz metasurfaces employing vanadium dioxide.
    Li X; Tang S; Ding F; Zhong S; Yang Y; Jiang T; Zhou J
    Sci Rep; 2019 Apr; 9(1):5454. PubMed ID: 30931982
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Multifunction and switchable hybrid metasurface based on graphene and gold.
    Sajjad M; Kong X; Liu S; Irshad Khan M
    Appl Opt; 2024 Apr; 63(12):3099-3107. PubMed ID: 38856453
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.