BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 28380926)

  • 1. Ultrahigh enhancement of light focusing through disordered media controlled by mega-pixel modes.
    Yu H; Lee K; Park Y
    Opt Express; 2017 Apr; 25(7):8036-8047. PubMed ID: 28380926
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Anti-scattering light focusing by fast wavefront shaping based on multi-pixel encoded digital-micromirror device.
    Yang J; He Q; Liu L; Qu Y; Shao R; Song B; Zhao Y
    Light Sci Appl; 2021 Jul; 10(1):149. PubMed ID: 34285183
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Increasing the enhancement factor for DMD-based wavefront shaping.
    Nam K; Park JH
    Opt Lett; 2020 Jul; 45(13):3381-3384. PubMed ID: 32630850
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Optimization of focusing through scattering media using the continuous sequential algorithm.
    Thompson JV; Hokr BH; Yakovlev VV
    J Mod Opt; 2016; 63(1):80-84. PubMed ID: 27018179
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Iterative optimization of time-gated reflectance for the efficient light energy delivery within scattering media.
    Jeong S; Kim DY; Lee YR; Choi W; Choi W
    Opt Express; 2019 Apr; 27(8):10936-10945. PubMed ID: 31052946
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Binary wavefront optimization using a simulated annealing algorithm.
    Fang L; Zuo H; Yang Z; Zhang X; Du J; Pang L
    Appl Opt; 2018 Mar; 57(8):1744-1751. PubMed ID: 29521954
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Photoacoustically guided wavefront shaping for enhanced optical focusing in scattering media.
    Lai P; Wang L; Tay JW; Wang LV
    Nat Photonics; 2015 Feb; 9(2):126-132. PubMed ID: 25914725
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Complex wavefront shaping for optimal depth-selective focusing in optical coherence tomography.
    Jang J; Lim J; Yu H; Choi H; Ha J; Park JH; Oh WY; Jang W; Lee S; Park Y
    Opt Express; 2013 Feb; 21(3):2890-902. PubMed ID: 23481747
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fast 3D movement of a laser focusing spot behind scattering media by utilizing optical memory effect and optical conjugate planes.
    Tran V; Sahoo SK; Dang C
    Sci Rep; 2019 Dec; 9(1):19507. PubMed ID: 31862990
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Parallel wavefront optimization method for focusing light through random scattering media.
    Cui M
    Opt Lett; 2011 Mar; 36(6):870-2. PubMed ID: 21403712
    [TBL] [Abstract][Full Text] [Related]  

  • 11. High-speed scattering medium characterization with application to focusing light through turbid media.
    Conkey DB; Caravaca-Aguirre AM; Piestun R
    Opt Express; 2012 Jan; 20(2):1733-40. PubMed ID: 22274516
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Focusing light through dynamical samples using fast continuous wavefront optimization.
    Blochet B; Bourdieu L; Gigan S
    Opt Lett; 2017 Dec; 42(23):4994-4997. PubMed ID: 29216164
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Focusing light through scattering media by transmission matrix inversion.
    Xu J; Ruan H; Liu Y; Zhou H; Yang C
    Opt Express; 2017 Oct; 25(22):27234-27246. PubMed ID: 29092201
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Multi-objective optimization genetic algorithm for multi-point light focusing in wavefront shaping.
    Feng Q; Yang F; Xu X; Zhang B; Ding Y; Liu Q
    Opt Express; 2019 Dec; 27(25):36459-36473. PubMed ID: 31873425
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Efficiently scanning a focus behind scattering media beyond memory effect by wavefront tilting and re-optimization.
    Wang X; Zhao W; Zhai A; Wang D
    Opt Express; 2023 Sep; 31(20):32287-32297. PubMed ID: 37859035
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Doubling the pixel count limitation of single-pixel imaging via sinusoidal amplitude modulation.
    Zhang Y; Suo J; Wang Y; Dai Q
    Opt Express; 2018 Mar; 26(6):6929-6942. PubMed ID: 29609379
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Second-harmonic focusing by a nonlinear turbid medium via feedback-based wavefront shaping.
    Qiao Y; Peng Y; Zheng Y; Ye F; Chen X
    Opt Lett; 2017 May; 42(10):1895-1898. PubMed ID: 28504753
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Single-shot time-reversed optical focusing into and through scattering media.
    Cheng Z; Yang J; Wang LV
    ACS Photonics; 2020 Oct; 7(10):2871-2877. PubMed ID: 34337103
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Influence of the absorber dimensions on wavefront shaping based on volumetric optoacoustic feedback.
    Deán-Ben XL; Estrada H; Ozbek A; Razansky D
    Opt Lett; 2015 Nov; 40(22):5395-8. PubMed ID: 26565883
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Controlling Light Transmission Through Highly Scattering Media Using Semi-Definite Programming as a Phase Retrieval Computation Method.
    N'Gom M; Lien MB; Estakhri NM; Norris TB; Michielssen E; Nadakuditi RR
    Sci Rep; 2017 May; 7(1):2518. PubMed ID: 28566700
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.