These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 28380964)

  • 1. Determination of the excitation rate of quantum dots mediated by momentum-resolved Bloch-like surface plasmon polaritons.
    Lin M; Cao ZL; Ong HC
    Opt Express; 2017 Mar; 25(6):6092-6103. PubMed ID: 28380964
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Study of the momentum-resolved plasmonic field energy of Bloch-like surface plasmon polaritons from periodic nanohole array.
    Cao ZL; Ong HC
    Opt Express; 2017 Nov; 25(24):30626-30635. PubMed ID: 29221090
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Momentum-dependent group velocity of surface plasmon polaritons in two-dimensional metallic nanohole array.
    Cao ZL; Ong HC
    Opt Express; 2016 Jun; 24(12):12489-500. PubMed ID: 27410269
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Study of coupling efficiency of molecules to surface plasmon polaritons in surface-enhanced Raman scattering (SERS).
    Chan CY; Cao ZL; Ong HC
    Opt Express; 2013 Jun; 21(12):14674-82. PubMed ID: 23787656
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Determination of the Excitation and Coupling Rates Between Light Emitters and Surface Plasmon Polaritons.
    Cao Z; Lin M; Ong D
    J Vis Exp; 2018 Jul; (137):. PubMed ID: 30080199
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Excitation of direction-tunable surface plasmon polaritons by using a rectangular array of silver nanodisks.
    Yao S; Guo Z; Sun H; Huang H
    Opt Express; 2018 Aug; 26(16):20102-20110. PubMed ID: 30119325
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Conversion of a Helical Surface Plasmon Polariton into a Spiral Surface Plasmon Polariton at the Outlet of a Metallic Nanohole.
    Ku YC; Liaw JW; Mao SY; Kuo MK
    ACS Omega; 2022 Mar; 7(12):10420-10428. PubMed ID: 35382270
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Determination of absorption and radiative decay rates of surface plasmon polaritons from nanohole array.
    Cao Z; Lo HY; Ong HC
    Opt Lett; 2012 Dec; 37(24):5166-8. PubMed ID: 23258040
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Optical control of plasmonic Bloch modes on periodic nanostructures.
    Gjonaj B; Aulbach J; Johnson PM; Mosk AP; Kuipers L; Lagendijk A
    Nano Lett; 2012 Feb; 12(2):546-50. PubMed ID: 22268886
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Directional amplified spontaneous emissions from Ag nanohole array with high diffraction orders.
    Liu Y; Lv F; Xiao J; Wu D; La J; Yin X; Wang Y; Wang W
    Opt Lett; 2023 Feb; 48(3):843-846. PubMed ID: 36723603
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bloch-Surface Plasmon Polariton Enhanced Amplified and Directional Spontaneous Emission from Plasmonic Hexagonal Nanohole Array.
    Wu D; Wang Y; Liu Y; La J; He S; Lv F; Wang W
    ACS Appl Mater Interfaces; 2023 Mar; 15(12):16198-16203. PubMed ID: 36920178
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Determination of the absorption and radiative decay rates of dark and bright plasmonic modes.
    Cao ZL; Ong HC
    Opt Express; 2014 Jun; 22(13):16112-29. PubMed ID: 24977864
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tunable surface plasmon polaritons and ultrafast dynamics in 2D nanohole arrays.
    Gao M; He Y; Chen Y; Shih TM; Yang W; Wang J; Zhao F; Li MD; Chen H; Yang Z
    Nanoscale; 2019 Sep; 11(35):16428-16436. PubMed ID: 31441473
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Microscopic Study on Excitation and Emission Enhancement by the Plasmon Mode on a Plasmonic Chip.
    Chida H; Tawa K
    Sensors (Basel); 2020 Nov; 20(22):. PubMed ID: 33182635
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ultrafast Microscopy of Spin-Momentum-Locked Surface Plasmon Polaritons.
    Dai Y; Dąbrowski M; Apkarian VA; Petek H
    ACS Nano; 2018 Jul; 12(7):6588-6596. PubMed ID: 29883101
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Direct imaging of localized surface plasmon polaritons.
    Balci S; Karademir E; Kocabas C; Aydinli A
    Opt Lett; 2011 Sep; 36(17):3401-3. PubMed ID: 21886224
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Propagating Surface Plasmon Polaritons on Systems with Variable Periodicity and Variable Gap-Depth.
    O'Toole S; Zerulla D
    Materials (Basel); 2020 Oct; 13(21):. PubMed ID: 33114279
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Surface plasmon polaritons of higher-order mode and standing waves in metallic nanowires.
    Liaw JW; Mao SY; Luo JY; Ku YC; Kuo MK
    Opt Express; 2021 Jun; 29(12):18876-18888. PubMed ID: 34154134
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Converting Plasmonic Light Scattering to Confined Light Absorption and Creating Plexcitons by Coupling a Gold Nano-pyramid Array onto a Silica-Gold Film.
    Zheng P; Kasani S; Wu N
    Nanoscale Horiz; 2019 Mar; 4(2):516-525. PubMed ID: 31463080
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A study of two-photon florescence in metallic nanoshells.
    Singh MR; Persaud PD; Yastrebov S
    Nanotechnology; 2020 Apr; 31(26):265203. PubMed ID: 32197263
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.