These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 28380985)

  • 1. Active phase correction of high resolution silicon photonic arrayed waveguide gratings.
    Gehl M; Trotter D; Starbuck A; Pomerene A; Lentine AL; DeRose C
    Opt Express; 2017 Mar; 25(6):6320-6334. PubMed ID: 28380985
    [TBL] [Abstract][Full Text] [Related]  

  • 2. High resolution, high channel count mid-infrared arrayed waveguide gratings in silicon.
    Malik A; Spott A; Wang Y; Stanton EJ; Peters J; Bowers JE
    Opt Lett; 2020 Aug; 45(16):4551-4554. PubMed ID: 32797007
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Phase errors and statistical analysis of silicon-nitride arrayed waveguide gratings.
    Han Q; Robin D; Gervais A; Ménard M; Shi W
    Opt Express; 2022 Nov; 30(24):42784-42800. PubMed ID: 36522991
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Silicon photonic arrayed waveguide grating with 64 channels for the 2 µm spectral range.
    Liu Y; Wang X; Yao Y; Du J; Song Q; Xu K
    Opt Lett; 2022 Mar; 47(5):1186-1189. PubMed ID: 35230323
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ultracompact silicon-on-insulator-based reflective arrayed waveguide gratings for spectroscopic applications.
    Zou J; Lang T; Le Z; He JJ
    Appl Opt; 2016 May; 55(13):3531-6. PubMed ID: 27140366
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Toward optical coherence tomography on a chip: in vivo three-dimensional human retinal imaging using photonic integrated circuit-based arrayed waveguide gratings.
    Rank EA; Sentosa R; Harper DJ; Salas M; Gaugutz A; Seyringer D; Nevlacsil S; Maese-Novo A; Eggeling M; Muellner P; Hainberger R; Sagmeister M; Kraft J; Leitgeb RA; Drexler W
    Light Sci Appl; 2021 Jan; 10(1):6. PubMed ID: 33402664
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Integrated silicon photonic wavelength-selective switch using wavefront control waveguides.
    Nakamura F; Muramatsu K; Suzuki K; Tanizawa K; Ohtsuka M; Yokoyama N; Matsumaro K; Seki M; Koshino K; Ikeda K; Namiki S; Kawashima H; Tsuda H
    Opt Express; 2018 May; 26(10):13573-13589. PubMed ID: 29801381
    [TBL] [Abstract][Full Text] [Related]  

  • 8. High-efficiency mid-infrared InGaAs/InP arrayed waveguide gratings.
    Karnik TS; Dao KP; Du Q; Diehl L; Pflügl C; Vakhshoori D; Hu J
    Opt Express; 2023 Jan; 31(3):5056-5068. PubMed ID: 36785457
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Design trade-offs for silicon-on-insulator-based AWGs for (de)multiplexer applications.
    Pathak S; Van Thourhout D; Bogaerts W
    Opt Lett; 2013 Aug; 38(16):2961-4. PubMed ID: 24104621
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fabrication of silicon reflection-type arrayed-waveguide gratings with distributed Bragg reflectors.
    Okamoto K; Ishida K
    Opt Lett; 2013 Sep; 38(18):3530-3. PubMed ID: 24104806
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Passive Photonic Integrated Circuits Elements Fabricated on a Silicon Nitride Platform.
    Lelit M; Słowikowski M; Filipiak M; Juchniewicz M; Stonio B; Michalak B; Pavłov K; Myśliwiec M; Wiśniewski P; Kaźmierczak A; Anders K; Stopiński S; Beck RB; Piramidowicz R
    Materials (Basel); 2022 Feb; 15(4):. PubMed ID: 35207939
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Performance limits of astronomical arrayed waveguide gratings on a silica platform.
    Stoll A; Madhav K; Roth M
    Opt Express; 2020 Dec; 28(26):39354-39367. PubMed ID: 33379487
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Silicon photonic slot waveguide Bragg gratings and resonators.
    Wang X; Grist S; Flueckiger J; Jaeger NA; Chrostowski L
    Opt Express; 2013 Aug; 21(16):19029-39. PubMed ID: 23938818
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Anisotropy-free arrayed waveguide gratings on X-cut thin film lithium niobate platform of in-plane anisotropy.
    Yi J; Guo C; Ruan Z; Chen G; Wei H; Lu L; Gong S; Pan X; Shen X; Guan X; Dai D; Zhong K; Liu L
    Light Sci Appl; 2024 Jun; 13(1):147. PubMed ID: 38951501
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Narrow-band waveguide Bragg gratings on SOI wafers with CMOS-compatible fabrication process.
    Wang X; Shi W; Yun H; Grist S; Jaeger NA; Chrostowski L
    Opt Express; 2012 Jul; 20(14):15547-58. PubMed ID: 22772250
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Thermo-optic phase shifters based on silicon-on-insulator platform: state-of-the-art and a review.
    Liu S; Feng J; Tian Y; Zhao H; Jin L; Ouyang B; Zhu J; Guo J
    Front Optoelectron; 2022 Apr; 15(1):9. PubMed ID: 36637587
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Silicon arrayed waveguide gratings at 2.0-μm wavelength characterized with an on-chip resonator.
    Stanton EJ; Volet N; Bowers JE
    Opt Lett; 2018 Mar; 43(5):1135-1138. PubMed ID: 29489798
    [TBL] [Abstract][Full Text] [Related]  

  • 18. 95 GHz millimeter wave signal generation using an arrayed waveguide grating dual wavelength semiconductor laser.
    Carpintero G; Rouvalis E; Ławniczuk K; Fice M; Renaud CC; Leijtens XJ; Bente EA; Chitoui M; Van Dijk F; Seeds AJ
    Opt Lett; 2012 Sep; 37(17):3657-9. PubMed ID: 22940981
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Compact Silicon-Arrayed Waveguide Gratings with Low Nonuniformity.
    Yang C; Zhou Z; Gao X; Xu Z; Han S; Chong Y; Min R; Yue Y; Duan Z
    Sensors (Basel); 2024 Aug; 24(16):. PubMed ID: 39204997
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bandpass filters based on phase-shifted photonic crystal waveguide gratings.
    Chen C; Li X; Li H; Xu K; Wu J; Lin J
    Opt Express; 2007 Sep; 15(18):11278-84. PubMed ID: 19547485
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.