BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 28380997)

  • 1. Self-interference fluorescence microscopy with three-phase detection for depth-resolved confocal epi-fluorescence imaging.
    Braaf B; de Boer JF
    Opt Express; 2017 Mar; 25(6):6475-6496. PubMed ID: 28380997
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dual-detection confocal fluorescence microscopy: fluorescence axial imaging without axial scanning.
    Lee DR; Kim YD; Gweon DG; Yoo H
    Opt Express; 2013 Jul; 21(15):17839-48. PubMed ID: 23938657
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Depth-encoded synthetic aperture optical coherence tomography of biological tissues with extended focal depth.
    Mo J; de Groot M; de Boer JF
    Opt Express; 2015 Feb; 23(4):4935-45. PubMed ID: 25836528
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [A new approach for studying the retinal and choroidal circulation].
    Yoneya S
    Nippon Ganka Gakkai Zasshi; 2004 Dec; 108(12):836-61; discussion 862. PubMed ID: 15656089
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Focus-extension by depth-encoded synthetic aperture in Optical Coherence Tomography.
    Mo J; de Groot M; de Boer JF
    Opt Express; 2013 Apr; 21(8):10048-61. PubMed ID: 23609710
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characterization of leakage activity in exudative chorioretinal disease with three-dimensional confocal angiography.
    Teschner S; Noack J; Birngruber R; Schmidt-Erfurth U
    Ophthalmology; 2003 Apr; 110(4):687-97. PubMed ID: 12689887
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Highly sensitive, wide dynamic range displacement sensor combining chromatic confocal system and phase-sensitive spectral optical coherence tomography.
    Dong B; Zhang Y; Zhang W; He Z; Xie S; Zhou Y
    Opt Express; 2017 Mar; 25(5):5426-5430. PubMed ID: 28380803
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Self-interference fluorescence microscopy: three dimensional fluorescence imaging without depth scanning.
    de Groot M; Evans CL; de Boer JF
    Opt Express; 2012 Jul; 20(14):15253-62. PubMed ID: 22772223
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Image formation in fluorescence coherence-gated imaging through scattering media.
    Bilenca A; Lasser T; Ozcan A; Leitgeb RA; Bouma BE; Tearney GJ
    Opt Express; 2007 Mar; 15(6):2810-21. PubMed ID: 19532519
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Simultaneous dual-band optical coherence tomography in the spectral domain for high resolution in vivo imaging.
    Cimalla P; Walther J; Mehner M; Cuevas M; Koch E
    Opt Express; 2009 Oct; 17(22):19486-500. PubMed ID: 19997169
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fluorescence coherence tomography.
    Bilenca A; Ozcan A; Bouma B; Tearney G
    Opt Express; 2006 Aug; 14(16):7134-43. PubMed ID: 19529084
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Improved in vivo whole-animal detection limits of green fluorescent protein-expressing tumor lines by spectral fluorescence imaging.
    Tam JM; Upadhyay R; Pittet MJ; Weissleder R; Mahmood U
    Mol Imaging; 2007; 6(4):269-76. PubMed ID: 17711782
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cryo X-ray microscope with flat sample geometry for correlative fluorescence and nanoscale tomographic imaging.
    Schneider G; Guttmann P; Rehbein S; Werner S; Follath R
    J Struct Biol; 2012 Feb; 177(2):212-23. PubMed ID: 22273540
    [TBL] [Abstract][Full Text] [Related]  

  • 14. High-resolution, dual-depth spectral-domain optical coherence tomography with interlaced detection for whole-eye imaging.
    Kim HJ; Kim PU; Hyeon MG; Choi Y; Kim J; Kim BM
    Appl Opt; 2016 Sep; 55(26):7212-7. PubMed ID: 27661354
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Development of a confocal scanning microscope for fluorescence imaging and spectroscopy at variable temperatures.
    Hu Y; Moran BM; Woehl JC
    Rev Sci Instrum; 2019 Apr; 90(4):043702. PubMed ID: 31043002
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Full-field optical coherence tomography using immersion Mirau interference microscope.
    Lu SH; Chang CJ; Kao CF
    Appl Opt; 2013 Jun; 52(18):4400-3. PubMed ID: 23842185
    [TBL] [Abstract][Full Text] [Related]  

  • 17. High-resolution three-dimensional images from confocal scanning laser microscopy. Quantitative study and mathematical correction of the effects from bleaching and fluorescence attenuation in depth.
    Rigaut JP; Vassy J
    Anal Quant Cytol Histol; 1991 Aug; 13(4):223-32. PubMed ID: 1930541
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A hyperspectral fluorescence system for 3D in vivo optical imaging.
    Zavattini G; Vecchi S; Mitchell G; Weisser U; Leahy RM; Pichler BJ; Smith DJ; Cherry SR
    Phys Med Biol; 2006 Apr; 51(8):2029-43. PubMed ID: 16585843
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Upconversion Spectral Rulers for Transcutaneous Displacement Measurements.
    Suckey MM; Benza DW; DesJardins JD; Anker JN
    Sensors (Basel); 2021 May; 21(10):. PubMed ID: 34065299
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Non-axial-scanning multifocal confocal microscopy with multiplexed volume holographic gratings.
    Wang PH; Singh VR; Wong JM; Sung KB; Luo Y
    Opt Lett; 2017 Jan; 42(2):346-349. PubMed ID: 28081109
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.