These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 28380997)

  • 21. Motion artifact suppression in full-field optical coherence tomography.
    Sacchet D; Brzezinski M; Moreau J; Georges P; Dubois A
    Appl Opt; 2010 Mar; 49(9):1480-8. PubMed ID: 20300141
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Fiber-optic large-depth 3D chromatic confocal endomicroscopy.
    Yang X; Wang Y; Zhang H; Qin H; Wang S; Tong Y; Zhou K; Sun R; Yue S; Chen X; Ding S; Wang P
    Biomed Opt Express; 2022 Jan; 13(1):300-313. PubMed ID: 35154872
    [TBL] [Abstract][Full Text] [Related]  

  • 23. An evaluation of two-photon excitation versus confocal and digital deconvolution fluorescence microscopy imaging in Xenopus morphogenesis.
    Periasamy A; Skoglund P; Noakes C; Keller R
    Microsc Res Tech; 1999 Nov; 47(3):172-81. PubMed ID: 10544332
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Spectral domain fluorescence coherence phase microscopy.
    St Quintin A; Merhi LK; Sarunic MV
    Appl Opt; 2011 Apr; 50(12):1798-804. PubMed ID: 21509074
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Spectral Phase Shift Interferometry for Refractive Index Monitoring in Micro-Capillaries.
    Bello V; Simoni A; Merlo S
    Sensors (Basel); 2020 Feb; 20(4):. PubMed ID: 32075175
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Depth-Encoded Spectral Domain Phase Microscopy for Simultaneous Multi-Site Nanoscale Optical Measurements.
    Hendargo HC; Bower BA; Reinstein AS; Shepherd N; Tao YK; Izatt JA
    Opt Commun; 2011 Sep; 284(19):4847-4851. PubMed ID: 21886940
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Long-depth imaging of specific gene expressions in whole-mount mouse embryos with single-photon excitation confocal fluorescence microscopy and FISH.
    Palmes-Saloma C; Saloma C
    J Struct Biol; 2000 Jul; 131(1):56-66. PubMed ID: 10945970
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Three-dimensional intracellular optical coherence phase imaging.
    Helderman F; Haslam B; de Boer JF; de Groot M
    Opt Lett; 2013 Feb; 38(4):431-3. PubMed ID: 23455092
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Non-invasive imaging of skin physiology and percutaneous penetration using fluorescence spectral and lifetime imaging with multiphoton and confocal microscopy.
    Roberts MS; Dancik Y; Prow TW; Thorling CA; Lin LL; Grice JE; Robertson TA; König K; Becker W
    Eur J Pharm Biopharm; 2011 Apr; 77(3):469-88. PubMed ID: 21256962
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Spectral phase based k-domain interpolation for uniform sampling in swept-source optical coherence tomography.
    Wu T; Ding Z; Wang L; Chen M
    Opt Express; 2011 Sep; 19(19):18430-9. PubMed ID: 21935211
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A line-scanning semi-confocal multi-photon fluorescence microscope with a simultaneous broadband spectral acquisition and its application to the study of the thylakoid membrane of a cyanobacterium Anabaena PCC7120.
    Kumazaki S; Hasegawa M; Ghoneim M; Shimizu Y; Okamoto K; Nishiyama M; Oh-Oka H; Terazima M
    J Microsc; 2007 Nov; 228(Pt 2):240-54. PubMed ID: 17970923
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Spectrally resolved incoherent holography: 3D spatial and spectral imaging using a Mach-Zehnder radial-shearing interferometer.
    Naik DN; Pedrini G; Takeda M; Osten W
    Opt Lett; 2014 Apr; 39(7):1857-60. PubMed ID: 24686623
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Quantitative Fluorescence Sensing Through Highly Autofluorescent, Scattering, and Absorbing Media Using Mobile Microscopy.
    Göröcs Z; Rivenson Y; Ceylan Koydemir H; Tseng D; Troy TL; Demas V; Ozcan A
    ACS Nano; 2016 Sep; 10(9):8989-99. PubMed ID: 27622866
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Parallel detection experiment of fluorescence confocal microscopy using DMD.
    Wang Q; Zheng J; Wang K; Gui K; Guo H; Zhuang S
    Scanning; 2016 May; 38(3):234-9. PubMed ID: 26331288
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Imaging of optically thick specimen using two-photon excitation microscopy.
    Gerritsen HC; De Grauw CJ
    Microsc Res Tech; 1999 Nov; 47(3):206-9. PubMed ID: 10544335
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Characterization of gradient-index lens-fiber spacing toward applications in two-photon fluorescence endoscopy.
    Fu L; Gan X; Gu M
    Appl Opt; 2005 Dec; 44(34):7270-4. PubMed ID: 16353794
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Chromatic confocal microscopy for multi-depth imaging of epithelial tissue.
    Olsovsky C; Shelton R; Carrasco-Zevallos O; Applegate BE; Maitland KC
    Biomed Opt Express; 2013 May; 4(5):732-40. PubMed ID: 23667789
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Line-field confocal time-domain optical coherence tomography with dynamic focusing.
    Dubois A; Levecq O; Azimani H; Davis A; Ogien J; Siret D; Barut A
    Opt Express; 2018 Dec; 26(26):33534-33542. PubMed ID: 30650800
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Novel method of detecting movement of the interference fringes using one-dimensional PSD.
    Wang Q; Xia J; Liu X; Zhao Y
    Sensors (Basel); 2015 Jun; 15(6):12857-71. PubMed ID: 26043175
    [TBL] [Abstract][Full Text] [Related]  

  • 40. [Manufacture tolerance analysis of solid Mach-Zehnder interferometer in large aperture static imaging spectrometer (LASIS)].
    Liu Q; Zhou JS; Nie YF; Lü QB
    Guang Pu Xue Yu Guang Pu Fen Xi; 2014 Jul; 34(7):2000-4. PubMed ID: 25269324
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.