These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

96 related articles for article (PubMed ID: 28381012)

  • 21. Plasmonic Periodic Nanodot Arrays via Laser Interference Lithography for Organic Photovoltaic Cells with >10% Efficiency.
    Oh Y; Lim JW; Kim JG; Wang H; Kang BH; Park YW; Kim H; Jang YJ; Kim J; Kim DH; Ju BK
    ACS Nano; 2016 Nov; 10(11):10143-10151. PubMed ID: 27809471
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Gold nanopillar arrays as biosensors fabricated by electron beam lithography combined with electroplating.
    Liu J; Zhang S; Ma Y; Shao J; Lu B; Chen Y
    Appl Opt; 2015 Mar; 54(9):2537-42. PubMed ID: 25968546
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Noble metals on the nanoscale: optical and photothermal properties and some applications in imaging, sensing, biology, and medicine.
    Jain PK; Huang X; El-Sayed IH; El-Sayed MA
    Acc Chem Res; 2008 Dec; 41(12):1578-86. PubMed ID: 18447366
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Plasmonic Ag@oxide nanoprisms for enhanced performance of organic solar cells.
    Du P; Jing P; Li D; Cao Y; Liu Z; Sun Z
    Small; 2015 May; 11(20):2454-62. PubMed ID: 25641914
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Hybrid nanoparticle-nanoline plasmonic cavities as SERS substrates with gap-controlled enhancements and resonances.
    Sharma Y; Dhawan A
    Nanotechnology; 2014 Feb; 25(8):085202. PubMed ID: 24492249
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Nanoimprinted plasmonic nanocavity arrays.
    Kim S; Xuan Y; Drachev VP; Varghese LT; Fan L; Qi M; Webb KJ
    Opt Express; 2013 Jul; 21(13):15081-9. PubMed ID: 23842295
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Multiple coupling in plasmonic metal/dielectric hollow nanocavity arrays for highly sensitive detection.
    Yin J; Zang Y; Yue C; He X; Yang H; Wu DY; Wu M; Kang J; Wu Z; Li J
    Nanoscale; 2015 Aug; 7(32):13495-502. PubMed ID: 26198998
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Optical design of organic solar cell with hybrid plasmonic system.
    Sha WE; Choy WC; Chen YP; Chew WC
    Opt Express; 2011 Aug; 19(17):15908-18. PubMed ID: 21934954
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Use of a near-field optical probe to locally launch surface plasmon polaritons on plasmonic waveguides: a study by the finite difference time domain method.
    Hwang BS; Kwon MH; Kim J
    Microsc Res Tech; 2004 Aug; 64(5-6):453-8. PubMed ID: 15549697
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Effect of SiO2 Spacer-Layer Thickness on Localized Surface Plasmon-Enhanced ZnO Nanorod Array LEDs.
    Liu W; Xu H; Yan S; Zhang C; Wang L; Wang C; Yang L; Wang X; Zhang L; Wang J; Liu Y
    ACS Appl Mater Interfaces; 2016 Jan; 8(3):1653-60. PubMed ID: 26741886
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Plasmonic Modes and Fluorescence Enhancement Coupling Mechanism: A Case with a Nanostructured Grating.
    Angelini M; Manobianco E; Pellacani P; Floris F; Marabelli F
    Nanomaterials (Basel); 2022 Dec; 12(23):. PubMed ID: 36500962
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Resonant absorption and scattering suppression of localized surface plasmons in Ag particles on green LED.
    Jiang S; Hu Z; Chen Z; Fu X; Jiang X; Jiao Q; Yu T; Zhang G
    Opt Express; 2013 May; 21(10):12100-10. PubMed ID: 23736430
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Plasmonic modes of extreme subwavelength nanocavities.
    Petschulat J; Helgert C; Steinert M; Bergner N; Rockstuhl C; Lederer F; Pertsch T; Tünnermann A; Kley EB
    Opt Lett; 2010 Aug; 35(16):2693-5. PubMed ID: 20717426
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Transformation Optics Approach to Plasmon-Exciton Strong Coupling in Nanocavities.
    Li RQ; Hernángomez-Pérez D; García-Vidal FJ; Fernández-Domínguez AI
    Phys Rev Lett; 2016 Sep; 117(10):107401. PubMed ID: 27636492
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Spin-Dependent Emission from Arrays of Planar Chiral Nanoantennas Due to Lattice and Localized Plasmon Resonances.
    Cotrufo M; Osorio CI; Koenderink AF
    ACS Nano; 2016 Mar; 10(3):3389-97. PubMed ID: 26854880
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Second harmonic excitation spectroscopy of silver nanoparticle arrays.
    Moran AM; Sung J; Hicks EM; Van Duyne RP; Spears KG
    J Phys Chem B; 2005 Mar; 109(10):4501-6. PubMed ID: 16851525
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Plasmon-enhanced light emission based on lattice resonances of silver nanocylinder arrays.
    Henson J; DiMaria J; Dimakis E; Moustakas TD; Paiella R
    Opt Lett; 2012 Jan; 37(1):79-81. PubMed ID: 22212797
    [TBL] [Abstract][Full Text] [Related]  

  • 38. How does the plasmonic enhancement of molecular absorption depend on the energy gap between molecular excitation and plasmon modes: a mixed TDDFT/FDTD investigation.
    Sun J; Li G; Liang W
    Phys Chem Chem Phys; 2015 Jul; 17(26):16835-45. PubMed ID: 26058430
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Optical properties of nanohole arrays in metal-dielectric double films prepared by mask-on-metal colloidal lithography.
    Junesch J; Sannomiya T; Dahlin AB
    ACS Nano; 2012 Nov; 6(11):10405-15. PubMed ID: 23098107
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Plasmonic band gap engineering of plasmon-exciton coupling.
    Karademir E; Balci S; Kocabas C; Aydinli A
    Opt Lett; 2014 Oct; 39(19):5697-700. PubMed ID: 25360962
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.