These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 28381030)

  • 21. Plasmon-enhanced depolarization of reflected light from arrays of nanoparticle dimers.
    Walsh GF; Forestiere C; Dal Negro L
    Opt Express; 2011 Oct; 19(21):21081-90. PubMed ID: 21997116
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Far-field optical imaging of a linear array of coupled gold nanocubes: direct visualization of dark plasmon propagating modes.
    Chen HY; He CL; Wang CY; Lin MH; Mitsui D; Eguchi M; Teranishi T; Gwo S
    ACS Nano; 2011 Oct; 5(10):8223-9. PubMed ID: 21894949
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Static and Dynamic Near-Field Measurements of High-Order Plasmon Modes Induced in a Gold Triangular Nanoplate.
    Imaeda K; Hasegawa S; Imura K
    J Phys Chem Lett; 2018 Jul; 9(14):4075-4081. PubMed ID: 29985621
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Plasmonic nanoclusters with rotational symmetry: polarization-invariant far-field response vs changing near-field distribution.
    Rahmani M; Yoxall E; Hopkins B; Sonnefraud Y; Kivshar Y; Hong M; Phillips C; Maier SA; Miroshnichenko AE
    ACS Nano; 2013 Dec; 7(12):11138-46. PubMed ID: 24187975
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Plasmon dephasing time and optical field enhancement in a plasmonic nanobowl substrate studied by scanning near-field optical microscopy.
    Hasegawa S; Kanoda M; Tamura M; Hayashi K; Tokonami S; Iida T; Imura K
    J Chem Phys; 2024 Aug; 161(5):. PubMed ID: 39105551
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Plasmonic resonances in diffractive arrays of gold nanoantennas: near and far field effects.
    Nikitin AG; Kabashin AV; Dallaporta H
    Opt Express; 2012 Dec; 20(25):27941-52. PubMed ID: 23262740
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Strong dipole-quadrupole coupling and Fano resonance in H-like metallic nanostructures.
    Gonçalves MR; Melikyan A; Minassian H; Makaryan T; Marti O
    Opt Express; 2014 Oct; 22(20):24516-29. PubMed ID: 25322027
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Interference, coupling, and nonlinear control of high-order modes in single asymmetric nanoantennas.
    Abb M; Wang Y; Albella P; de Groot CH; Aizpurua J; Muskens OL
    ACS Nano; 2012 Jul; 6(7):6462-70. PubMed ID: 22708624
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Highly Controllable Surface Plasmon Resonance Property by Heights of Ordered Nanoparticle Arrays Fabricated via a Nonlithographic Route.
    Zhan Z; Xu R; Mi Y; Zhao H; Lei Y
    ACS Nano; 2015 Apr; 9(4):4583-90. PubMed ID: 25812724
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Photonic and plasmonic surface field distributions characterized with normal- and oblique-incidence multi-photon PEEM.
    Word RC; Könenkamp R
    Ultramicroscopy; 2017 Dec; 183():43-48. PubMed ID: 28551034
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Mechanisms of Fano resonances in coupled plasmonic systems.
    Lovera A; Gallinet B; Nordlander P; Martin OJ
    ACS Nano; 2013 May; 7(5):4527-36. PubMed ID: 23614396
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Direct optical excitation of dark plasmons for hot electron generation.
    Mueller NS; Vieira BGM; Höing D; Schulz F; Barros EB; Lange H; Reich S
    Faraday Discuss; 2019 May; 214(0):159-173. PubMed ID: 30912539
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Efficient energy exchange between plasmon and cavity modes via Rabi-analogue splitting in a hybrid plasmonic nanocavity.
    Chen S; Li G; Lei D; Cheah KW
    Nanoscale; 2013 Oct; 5(19):9129-33. PubMed ID: 23913114
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Decay rates modification through coupling of degenerate surface plasmon modes.
    Lo HY; Ong HC
    Opt Lett; 2012 Jul; 37(13):2736-8. PubMed ID: 22743512
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Gradual plasmon evolution and huge infrared near-field enhancement of metallic bridged nanoparticle dimers.
    Huang Y; Ma L; Hou M; Xie Z; Zhang Z
    Phys Chem Chem Phys; 2016 Jan; 18(4):2319-23. PubMed ID: 26752002
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Mode-dependent energy exchange between near- and far-field through silicon-supported single silver nanorods.
    Zhuo X; Li S; Li N; Cheng X; Lai Y; Wang J
    Nanoscale; 2022 Jun; 14(23):8362-8373. PubMed ID: 35635072
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Periodicity-induced symmetry breaking in a Fano lattice: hybridization and tight-binding regimes.
    Yan C; Martin OJ
    ACS Nano; 2014 Nov; 8(11):11860-8. PubMed ID: 25386975
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Plasmonic systems unveiled by Fano resonances.
    Francescato Y; Giannini V; Maier SA
    ACS Nano; 2012 Feb; 6(2):1830-8. PubMed ID: 22280066
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Multipitched Diffraction Gratings for Surface Plasmon Resonance-Enhanced Infrared Reflection Absorption Spectroscopy.
    Petefish JW; Hillier AC
    Anal Chem; 2015 Nov; 87(21):10862-70. PubMed ID: 26458177
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Modified rigorous coupled-wave analysis for grating-based plasmonic structures with a delta-thin conductive channel: far- and near-field study.
    Lyaschuk YM; Kukhtaruk SM; Janonis V; Korotyeyev VV
    J Opt Soc Am A Opt Image Sci Vis; 2021 Feb; 38(2):157-167. PubMed ID: 33690526
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.