These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 28381031)

  • 1. Integration of spectral coronagraphy within VIPA-based spectrometers for high extinction Brillouin imaging.
    Edrei E; Gather MC; Scarcelli G
    Opt Express; 2017 Mar; 25(6):6895-6903. PubMed ID: 28381031
    [TBL] [Abstract][Full Text] [Related]  

  • 2. High-extinction virtually imaged phased array-based Brillouin spectroscopy of turbid biological media.
    Fiore A; Zhang J; Shao P; Yun SH; Scarcelli G
    Appl Phys Lett; 2016 May; 108(20):203701. PubMed ID: 27274097
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Precise Determination of Brillouin Scattering Spectrum Using a Virtually Imaged Phase Array (VIPA) Spectrometer and Charge-Coupled Device (CCD) Camera.
    Meng Z; Yakovlev VV
    Appl Spectrosc; 2016 Aug; 70(8):1356-63. PubMed ID: 27296309
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Image analysis applied to Brillouin images of tissue-mimicking collagen gelatins.
    Correa N; Harding S; Bailey M; Brasselet S; Palombo F
    Biomed Opt Express; 2019 Mar; 10(3):1329-1338. PubMed ID: 30891349
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Single etalon design for two-stage cross-axis VIPA spectroscopy.
    Fiore A; Scarcelli G
    Biomed Opt Express; 2019 Mar; 10(3):1475-1481. PubMed ID: 30891361
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Brillouin spectroscopy via an atomic line monochromator.
    Hutchins R; Schumacher J; Frank E; Ambekar YS; Zanini G; Scarcelli G
    Opt Express; 2024 May; 32(11):18572-18581. PubMed ID: 38859010
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Multistage VIPA etalons for high-extinction parallel Brillouin spectroscopy.
    Scarcelli G; Yun SH
    Opt Express; 2011 May; 19(11):10913-22. PubMed ID: 21643351
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evaluation of commercial virtually imaged phase array and Fabry-Pérot based Brillouin spectrometers for applications to biology.
    Yan G; Bazir A; Margueritat J; Dehoux T
    Biomed Opt Express; 2020 Dec; 11(12):6933-6944. PubMed ID: 33408971
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Demonstration of a Rayleigh-Brillouin scattering spectrometer with a high spectral resolution for rapid gas temperature detection.
    Yan H; Wu T; Pi S; Wu Q; Ye C; He X
    Opt Lett; 2023 Nov; 48(22):5931-5934. PubMed ID: 37966755
    [TBL] [Abstract][Full Text] [Related]  

  • 10. High-finesse sub-GHz-resolution spectrometer employing VIPA etalons of different dispersion.
    Berghaus K; Zhang J; Yun SH; Scarcelli G
    Opt Lett; 2015 Oct; 40(19):4436-9. PubMed ID: 26421550
    [TBL] [Abstract][Full Text] [Related]  

  • 11. High-speed Continuous-wave Stimulated Brillouin Scattering Spectrometer for Material Analysis.
    Remer I; Cohen L; Bilenca A
    J Vis Exp; 2017 Sep; (127):. PubMed ID: 28994794
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Long range topography by dispersion unmatched spectral-domain interferometry based on virtually imaged phased array modes.
    Han T; Yang L; Tang Y; Chen C; Ma C; Liu Z; Ding Z
    Opt Lett; 2024 May; 49(9):2281-2284. PubMed ID: 38691699
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Background clean-up in Brillouin microspectroscopy of scattering medium.
    Meng Z; Traverso AJ; Yakovlev VV
    Opt Express; 2014 Mar; 22(5):5410-5. PubMed ID: 24663880
    [TBL] [Abstract][Full Text] [Related]  

  • 14. 1D interferometric Rayleigh scattering velocimetry and thermometry using VIPA.
    Luo X; Hadi ZA; Krishna Y; Magnotti G
    Opt Express; 2024 May; 32(11):20291-20302. PubMed ID: 38859143
    [TBL] [Abstract][Full Text] [Related]  

  • 15. VECSEL-based virtually imaged phased array spectrometer for rapid gas phase detection in the mid-infrared.
    Rockmore R; Gibson R; Moloney JV; Jones RJ
    Opt Lett; 2020 Oct; 45(20):5796-5799. PubMed ID: 33057287
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dark-field Brillouin microscopy.
    Antonacci G
    Opt Lett; 2017 Apr; 42(7):1432-1435. PubMed ID: 28362786
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Orthogonal dispersive spectral-domain optical coherence tomography.
    Bao W; Ding Z; Li P; Chen Z; Shen Y; Wang C
    Opt Express; 2014 Apr; 22(8):10081-90. PubMed ID: 24787889
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ultralong-range phase imaging with orthogonal dispersive spectral-domain optical coherence tomography.
    Wang C; Ding Z; Mei S; Yu H; Hong W; Yan Y; Shen W
    Opt Lett; 2012 Nov; 37(21):4555-7. PubMed ID: 23114361
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Development of a Rayleigh-Brillouin scattering spectrometer for fast high-gas-temperature measurements.
    Pi S; Wu T; Yan H; Yang J; Ye C; He X
    Opt Lett; 2024 Jul; 49(14):3850-3853. PubMed ID: 39008724
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Assessing performance of modern Brillouin spectrometers.
    Coker Z; Troyanova-Wood M; Traverso AJ; Yakupov T; Utegulov ZN; Yakovlev VV
    Opt Express; 2018 Feb; 26(3):2400-2409. PubMed ID: 29401780
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.